IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v211y2021ics0951832021001125.html
   My bibliography  Save this article

Evaluation of proactive maintenance policies on a stochastically dependent hidden multi-component system using DBNs

Author

Listed:
  • Özgür-Ãœnlüakın, Demet
  • Türkali, Busenur

Abstract

In complex systems with stochastically dependent components which are not observed directly, determining an effective maintenance policy is a difficult task. In this paper, a dynamic Bayesian network based maintenance decision framework is proposed to evaluate proactive maintenance policies for such systems. Two preventive and one predictive maintenance strategies from a cost perspective are designed for multi-component dependable systems which aim to reduce maintenance cost while increasing system reliability at the same time. Tabu procedure is employed to avoid repetitive similar actions. The performances of the policies are compared with a reactive maintenance strategy and also with each other using different strategy parameters on a real life system confronted in thermal power plants for six different scenarios. The scenarios are designed considering different structures of system dependability and reactive cost. The results show that the threshold based maintenance which is the predictive strategy gives the minimum cost and maintenance number in almost all scenarios.

Suggested Citation

  • Özgür-Ãœnlüakın, Demet & Türkali, Busenur, 2021. "Evaluation of proactive maintenance policies on a stochastically dependent hidden multi-component system using DBNs," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:reensy:v:211:y:2021:i:c:s0951832021001125
    DOI: 10.1016/j.ress.2021.107559
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021001125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Özgür-Ünlüakın, Demet & Türkali, Busenur & Karacaörenli, Ayşe & Çağlar Aksezer, S., 2019. "A DBN based reactive maintenance model for a complex system in thermal power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    2. Muller, Alexandre & Suhner, Marie-Christine & Iung, Benoît, 2008. "Formalisation of a new prognosis model for supporting proactive maintenance implementation on industrial system," Reliability Engineering and System Safety, Elsevier, vol. 93(2), pages 234-253.
    3. Robin P. Nicolai & Rommert Dekker, 2008. "Optimal Maintenance of Multi-component Systems: A Review," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 11, pages 263-286, Springer.
    4. Swanson, Laura, 2001. "Linking maintenance strategies to performance," International Journal of Production Economics, Elsevier, vol. 70(3), pages 237-244, April.
    5. Khairy A. H. Kobbacy & D. N. Prabhakar Murthy, 2008. "Complex System Maintenance Handbook," Springer Series in Reliability Engineering, Springer, number 978-1-84800-011-7, February.
    6. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    7. Ding, Fangfang & Tian, Zhigang, 2012. "Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds," Renewable Energy, Elsevier, vol. 45(C), pages 175-182.
    8. Dao, Cuong D. & Zuo, Ming J., 2017. "Selective maintenance of multi-state systems with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 184-195.
    9. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part I: Theory," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 202-213.
    10. Wang, Wenbin, 2012. "A simulation-based multivariate Bayesian control chart for real time condition-based maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 218(3), pages 726-734.
    11. Mohammad Yazdi & Farzaneh Nikfar & Mahnaz Nasrabadi, 2017. "Failure probability analysis by employing fuzzy fault tree analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1177-1193, November.
    12. Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
    13. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 214-224.
    14. Chang, Yuanjiang & Wu, Xiangfei & Zhang, Changshuai & Chen, Guoming & Liu, Xiuquan & Li, Jiayi & Cai, Baoping & Xu, Liangbin, 2019. "Dynamic Bayesian networks based approach for risk analysis of subsea wellhead fatigue failure during service life," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 454-462.
    15. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    16. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    17. Alrabghi, Abdullah & Tiwari, Ashutosh, 2016. "A novel approach for modelling complex maintenance systems using discrete event simulation," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 160-170.
    18. Shafiee, Mahmood & Finkelstein, Maxim, 2015. "An optimal age-based group maintenance policy for multi-unit degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 230-238.
    19. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2015. "Multi-level predictive maintenance for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 83-94.
    20. Zhou, Zhi-Jie & Hu, Chang-Hua & Xu, Dong-Ling & Chen, Mao-Yin & Zhou, Dong-Hua, 2010. "A model for real-time failure prognosis based on hidden Markov model and belief rule base," European Journal of Operational Research, Elsevier, vol. 207(1), pages 269-283, November.
    21. de Jonge, Bram & Jakobsons, Edgars, 2018. "Optimizing block-based maintenance under random machine usage," European Journal of Operational Research, Elsevier, vol. 265(2), pages 703-709.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Wu, Tianyi & Yang, Li & Ma, Xiaobing & Zhang, Zihan & Zhao, Yu, 2020. "Dynamic maintenance strategy with iteratively updated group information," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Özgür-Ünlüakın, Demet & Türkali, Busenur & Karacaörenli, Ayşe & Çağlar Aksezer, S., 2019. "A DBN based reactive maintenance model for a complex system in thermal power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    5. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    6. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    7. Shahraki, Ameneh Forouzandeh & Yadav, Om Prakash & Vogiatzis, Chrysafis, 2020. "Selective maintenance optimization for multi-state systems considering stochastically dependent components and stochastic imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    8. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    9. de Pater, Ingeborg & Mitici, Mihaela, 2021. "Predictive maintenance for multi-component systems of repairables with Remaining-Useful-Life prognostics and a limited stock of spare components," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    10. Fecarotti, Claudia & Andrews, John & Pesenti, Raffaele, 2021. "A mathematical programming model to select maintenance strategies in railway networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Truong Ba, H. & Cholette, M.E. & Borghesani, P. & Zhou, Y. & Ma, L., 2017. "Opportunistic maintenance considering non-homogenous opportunity arrivals and stochastic opportunity durations," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 151-161.
    12. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    13. Jingyi Zhao & Chunhai Gao & Tao Tang, 2022. "A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    14. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    15. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    16. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    17. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hierarchical-clustering-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems," International Journal of Production Economics, Elsevier, vol. 264(C).
    18. Kıvanç, İpek & Özgür-Ünlüakın, Demet & Bilgiç, Taner, 2022. "Maintenance policy analysis of the regenerative air heater system using factored POMDPs," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    19. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    20. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:211:y:2021:i:c:s0951832021001125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.