IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v154y2016icp160-170.html
   My bibliography  Save this article

A novel approach for modelling complex maintenance systems using discrete event simulation

Author

Listed:
  • Alrabghi, Abdullah
  • Tiwari, Ashutosh

Abstract

Existing approaches for modelling maintenance rely on oversimplified assumptions which prevent them from reflecting the complexity found in industrial systems. In this paper, we propose a novel approach that enables the modelling of non-identical multi-unit systems without restrictive assumptions on the number of units or their maintenance characteristics. Modelling complex interactions between maintenance strategies and their effects on assets in the system is achieved by accessing event queues in Discrete Event Simulation (DES). The approach utilises the wide success DES has achieved in manufacturing by allowing integration with models that are closely related to maintenance such as production and spare parts systems. Additional advantages of using DES include rapid modelling and visual interactive simulation. The proposed approach is demonstrated in a simulation based optimisation study of a published case. The current research is one of the first to optimise maintenance strategies simultaneously with their parameters while considering production dynamics and spare parts management. The findings of this research provide insights for non-conflicting objectives in maintenance systems. In addition, the proposed approach can be used to facilitate the simulation and optimisation of industrial maintenance systems.

Suggested Citation

  • Alrabghi, Abdullah & Tiwari, Ashutosh, 2016. "A novel approach for modelling complex maintenance systems using discrete event simulation," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 160-170.
  • Handle: RePEc:eee:reensy:v:154:y:2016:i:c:p:160-170
    DOI: 10.1016/j.ress.2016.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016301144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robin P. Nicolai & Rommert Dekker, 2008. "Optimal Maintenance of Multi-component Systems: A Review," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 11, pages 263-286, Springer.
    2. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    3. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    4. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    5. Van Horenbeek, Adriaan & Buré, Jasmine & Cattrysse, Dirk & Pintelon, Liliane & Vansteenwegen, Pieter, 2013. "Joint maintenance and inventory optimization systems: A review," International Journal of Production Economics, Elsevier, vol. 143(2), pages 499-508.
    6. Jahangirian, Mohsen & Eldabi, Tillal & Naseer, Aisha & Stergioulas, Lampros K. & Young, Terry, 2010. "Simulation in manufacturing and business: A review," European Journal of Operational Research, Elsevier, vol. 203(1), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linnéusson, Gary & Ng, Amos H.C. & Aslam, Tehseen, 2020. "A hybrid simulation-based optimization framework supporting strategic maintenance development to improve production performance," European Journal of Operational Research, Elsevier, vol. 281(2), pages 402-414.
    2. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    3. Zahedi-Hosseini, Farhad & Scarf, Philip & Syntetos, Aris, 2017. "Joint optimisation of inspection maintenance and spare parts provisioning: a comparative study of inventory policies using simulation and survey data," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 306-316.
    4. Wakiru, James M. & Pintelon, Liliane & Muchiri, Peter N. & Chemweno, Peter K., 2019. "A simulation-based optimization approach evaluating maintenance and spare parts demand interaction effects," International Journal of Production Economics, Elsevier, vol. 208(C), pages 329-342.
    5. Andrade, Antonio Ramos & Stow, Julian, 2017. "Assessing the potential cost savings of introducing the maintenance option of ‘Economic Tyre Turning’ in Great Britain railway wheelsets," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 317-325.
    6. Wakiru, James & Pintelon, Liliane & Muchiri, Peter N. & Chemweno, Peter K. & Mburu, Stanley, 2020. "Towards an innovative lubricant condition monitoring strategy for maintenance of ageing multi-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    7. Moura, Márcio das Chagas & Santana, João Mateus & Droguett, Enrique López & Lins, Isis Didier & Guedes, Bruno Nunes, 2017. "Analysis of extended warranties for medical equipment: A Stackelberg game model using priority queues," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 338-354.
    8. Zhou, Yifan & Guo, Yiming & Lin, Tian Ran & Ma, Lin, 2018. "Maintenance optimisation of a series production system with intermediate buffers using a multi-agent FMDP," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 39-48.
    9. Hu, Yang & Miao, Xuewen & Si, Yong & Pan, Ershun & Zio, Enrico, 2022. "Prognostics and health management: A review from the perspectives of design, development and decision," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Özgür-Ünlüakın, Demet & Türkali, Busenur, 2021. "Evaluation of proactive maintenance policies on a stochastically dependent hidden multi-component system using DBNs," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    11. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    12. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    13. Leoni, Leonardo & De Carlo, Filippo & Tucci, Mario, 2023. "Developing a framework for generating production-dependent failure rate through discrete-event simulation," International Journal of Production Economics, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Zhang, Xiaohong & Zeng, Jianchao, 2017. "Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 479-498.
    3. N. Knofius & M. C. Heijden & A. Sleptchenko & W. H. M. Zijm, 2021. "Improving effectiveness of spare parts supply by additive manufacturing as dual sourcing option," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 189-221, March.
    4. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    5. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    6. Seyedhosseini, Seyed Mohammad & Moakedi, Hamid & Shahanaghi, Kamran, 2018. "Imperfect inspection optimization for a two-component system subject to hidden and two-stage revealed failures over a finite time horizon," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 141-156.
    7. Dilaver, Halit Metehan & Akçay, Alp & van Houtum, Geert-Jan, 2023. "Integrated planning of asset-use and dry-docking for a fleet of maritime assets," International Journal of Production Economics, Elsevier, vol. 256(C).
    8. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    9. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    10. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    11. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.
    12. Wang, Wenbin & Syntetos, Aris A., 2011. "Spare parts demand: Linking forecasting to equipment maintenance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1194-1209.
    13. Poppe, Joeri & Basten, Rob J.I. & Boute, Robert N. & Lambrecht, Marc R., 2017. "Numerical study of inventory management under various maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 262-273.
    14. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zhong, 2019. "Scheduling of imperfect inspections for reliability critical systems with shock-driven defects and delayed failures," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 89-98.
    15. Wang, Wenbin, 2011. "An inspection model based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 838-848.
    16. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    17. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    18. Li Yang & Yu Zhao & Xiaobing Ma & Qingan Qiu, 2018. "An optimal inspection and replacement policy for a two-unit system," Journal of Risk and Reliability, , vol. 232(6), pages 766-776, December.
    19. Zhu, Mixin & Zhou, Xiaojun, 2022. "Hypergraph-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Barlow, E. & Bedford, T. & Revie, M. & Tan, J. & Walls, L., 2021. "A performance-centred approach to optimising maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 292(2), pages 579-595.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:154:y:2016:i:c:p:160-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.