IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v168y2017icp80-89.html
   My bibliography  Save this article

Discrete maintenance optimization of complex multi-component systems

Author

Listed:
  • BriÅ¡, Radim
  • Byczanski, Petr
  • Goňo, Radomír
  • Rusek, Stanislav

Abstract

A complex multi-component system consists of finite number of non-identical components that can be realized as maintained components with different maintenance modes. We distinguish between four component models: non-repairable components, repairable components with corrective maintenance, repairable components with latent failures that are identified by means of preventive maintenance and component with preventive maintenance policy in which the component is restored (either repaired or renewed). The paper describes a new method for optimal maintenance strategy of a complex system respecting a given reliability constraint. It is based on our previously developed direct analytical method that enables exact reliability quantifications of highly reliable systems with maintenance. The method takes into account complex systems with maintained components, including all above models. Cost-optimization problem is solved where decision variables are changeable maintenance parameters that are optimally selected from a set of possible realistic maintenance modes. As a discrete maintenance model in this paper is considered such a model, where each maintained component can be operated in one or few discrete maintenance modes. One maintenance mode is characterized by fixed decision variables that affect maintenance cost of the mode. If a system hypothetically contains k components with 5 independent maintenance modes, in total we have 5k maintenance configurations of the system, from which the optimal is found. The optimization method is demonstrated on real system from practice – a complex power distribution network.

Suggested Citation

  • BriÅ¡, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
  • Handle: RePEc:eee:reensy:v:168:y:2017:i:c:p:80-89
    DOI: 10.1016/j.ress.2017.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016308195
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Briš, Radim & Byczanski, Petr, 2013. "Effective computing algorithm for maintenance optimization of highly reliable systems," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 77-85.
    2. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    3. Samrout, M. & Châtelet, E. & Kouta, R. & Chebbo, N., 2009. "Optimization of maintenance policy using the proportional hazard model," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 44-52.
    4. Zitrou, A. & Bedford, T. & Daneshkhah, A., 2013. "Robustness of maintenance decisions: Uncertainty modelling and value of information," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 60-71.
    5. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    6. R Briš & P Byczanski, 2010. "Direct unavailability computation of a maintained highly reliable system," Journal of Risk and Reliability, , vol. 224(3), pages 159-170, September.
    7. Robin P. Nicolai & Rommert Dekker, 2008. "Optimal Maintenance of Multi-component Systems: A Review," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 11, pages 263-286, Springer.
    8. Zhao, Xufeng & Mizutani, Satoshi & Nakagawa, Toshio, 2015. "Which is better for replacement policies with continuous or discrete scheduled times?," European Journal of Operational Research, Elsevier, vol. 242(2), pages 477-486.
    9. de Jonge, Bram & Klingenberg, Warse & Teunter, Ruud & Tinga, Tiedo, 2016. "Reducing costs by clustering maintenance activities for multiple critical units," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 93-103.
    10. Galante, Giacomo & Passannanti, Gianfranco, 2009. "An exact algorithm for preventive maintenance planning of series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1517-1525.
    11. Certa, Antonella & Galante, Giacomo & Lupo, Toni & Passannanti, Gianfranco, 2011. "Determination of Pareto frontier in multi-objective maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 861-867.
    12. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    13. Cho, Danny I. & Parlar, Mahmut, 1991. "A survey of maintenance models for multi-unit systems," European Journal of Operational Research, Elsevier, vol. 51(1), pages 1-23, March.
    14. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    15. Rommert Dekker & Ralph Wildeman & Frank Duyn Schouten, 1997. "A review of multi-component maintenance models with economic dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(3), pages 411-435, October.
    16. Yeh, Ruey Huei & Lo, Hui-Chiung, 2001. "Optimal preventive-maintenance warranty policy for repairable products," European Journal of Operational Research, Elsevier, vol. 134(1), pages 59-69, October.
    17. Villén-Altamirano, J., 2014. "Asymptotic optimality of RESTART estimators in highly dependable systems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 115-124.
    18. Podofillini, Luca & Zio, Enrico, 2008. "Designing a risk-informed balanced system by genetic algorithms: Comparison of different balancing criteria," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1842-1852.
    19. Shafiee, Mahmood & Finkelstein, Maxim, 2015. "An optimal age-based group maintenance policy for multi-unit degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 230-238.
    20. Anahita Khojandi & Lisa Maillart & Oleg Prokopyev, 2014. "Optimal planning of life-depleting maintenance activities," IISE Transactions, Taylor & Francis Journals, vol. 46(7), pages 636-652.
    21. de Jonge, Bram & Klingenberg, Warse & Teunter, Ruud & Tinga, Tiedo, 2015. "Optimum maintenance strategy under uncertainty in the lifetime distribution," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 59-67.
    22. van der Weide, J.A.M. & Pandey, Mahesh D., 2015. "A stochastic alternating renewal process model for unavailability analysis of standby safety equipment," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 97-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radim Briš & Pavel Jahoda, 2022. "Really Ageing Systems Undergoing a Discrete Maintenance Optimization," Mathematics, MDPI, vol. 10(16), pages 1-17, August.
    2. Ariannik, Mohamadreza & Razi-Kazemi, Ali A. & Lehtonen, Matti, 2020. "An approach on lifetime estimation of distribution transformers based on degree of polymerization," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    3. Manco, Pasquale & Rinaldi, Marta & Caterino, Mario & Fera, Marcello & Macchiaroli, Roberto, 2022. "Maintenance management for geographically distributed assets: a criticality-based approach," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    4. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.
    5. Radim Briš & Nuong Thi Thuy Tran, 2023. "Discrete Model for a Multi-Objective Maintenance Optimization Problem of Safety Systems," Mathematics, MDPI, vol. 11(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Briš, Radim & Byczanski, Petr, 2013. "Effective computing algorithm for maintenance optimization of highly reliable systems," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 77-85.
    3. de Jonge, Bram & Jakobsons, Edgars, 2018. "Optimizing block-based maintenance under random machine usage," European Journal of Operational Research, Elsevier, vol. 265(2), pages 703-709.
    4. Maaroufi, Ghofrane & Chelbi, Anis & Rezg, Nidhal, 2013. "Optimal selective renewal policy for systems subject to propagated failures with global effect and failure isolation phenomena," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 61-70.
    5. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    6. Zhang, Xiaohong & Zeng, Jianchao, 2015. "A general modeling method for opportunistic maintenance modeling of multi-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 176-190.
    7. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    8. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    9. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    10. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    11. Do, Phuc & Vu, Hai Canh & Barros, Anne & Bérenguer, Christophe, 2015. "Maintenance grouping for multi-component systems with availability constraints and limited maintenance teams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 56-67.
    12. Olde Keizer, Minou C.A. & Teunter, Ruud H. & Veldman, Jasper, 2017. "Joint condition-based maintenance and inventory optimization for systems with multiple components," European Journal of Operational Research, Elsevier, vol. 257(1), pages 209-222.
    13. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    14. de Jonge, Bram & Klingenberg, Warse & Teunter, Ruud & Tinga, Tiedo, 2016. "Reducing costs by clustering maintenance activities for multiple critical units," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 93-103.
    15. Zhang, Xiaohong & Zeng, Jianchao, 2017. "Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 479-498.
    16. Francesco Corman & Sander Kraijema & Milinko Godjevac & Gabriel Lodewijks, 2017. "Optimizing preventive maintenance policy: A data-driven application for a light rail braking system," Journal of Risk and Reliability, , vol. 231(5), pages 534-545, October.
    17. Olde Keizer, Minou C.A. & Teunter, Ruud H. & Veldman, Jasper, 2016. "Clustering condition-based maintenance for systems with redundancy and economic dependencies," European Journal of Operational Research, Elsevier, vol. 251(2), pages 531-540.
    18. V Zille & C Bérenguer & A Grall & A Despujols, 2011. "Modelling multicomponent systems to quantify reliability centred maintenance strategies," Journal of Risk and Reliability, , vol. 225(2), pages 141-160, June.
    19. Fouladirad, Mitra & Paroissin, Christian & Grall, Antoine, 2018. "Sensitivity of optimal replacement policies to lifetime parameter estimates," European Journal of Operational Research, Elsevier, vol. 266(3), pages 963-975.
    20. Seyedhosseini, Seyed Mohammad & Moakedi, Hamid & Shahanaghi, Kamran, 2018. "Imperfect inspection optimization for a two-component system subject to hidden and two-stage revealed failures over a finite time horizon," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 141-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:168:y:2017:i:c:p:80-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.