IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v45y2012icp175-182.html
   My bibliography  Save this article

Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds

Author

Listed:
  • Ding, Fangfang
  • Tian, Zhigang

Abstract

Few methods are available for optimizing corrective maintenance and time-based maintenance for wind farms, although these strategies are currently widely used in practice. Economic dependencies exist among wind turbine systems and their components in the wind farm. That is, it may be more economical to maintain multiple turbines or turbine components when a corrective or preventive maintenance opportunity presents. In this paper, opportunistic maintenance approaches are developed for wind farms to take advantage of the maintenance opportunities. Imperfect maintenance actions are considered, which addresses the practical issue that preventive maintenance does not always return components to as-good-as-new status. The proposed opportunistic maintenance policies are defined by the component's age threshold values, and different imperfect maintenance thresholds are introduced for failure turbines and working turbines. Three types of preventive maintenance actions are considered, including perfect, imperfect and two-level action. Simulation methods are developed to evaluate the costs of proposed opportunistic maintenance policies. Numerical examples are provided to illustrate the proposed approaches. Comparative study with the widely used corrective maintenance policy demonstrates the advantage of the proposed opportunistic maintenance methods in significantly reducing the maintenance cost. The developed methods are expected to bring immediate benefits to wind power industry.

Suggested Citation

  • Ding, Fangfang & Tian, Zhigang, 2012. "Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds," Renewable Energy, Elsevier, vol. 45(C), pages 175-182.
  • Handle: RePEc:eee:renene:v:45:y:2012:i:c:p:175-182
    DOI: 10.1016/j.renene.2012.02.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112001802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.02.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Zhigang & Jin, Tongdan & Wu, Bairong & Ding, Fangfang, 2011. "Condition based maintenance optimization for wind power generation systems under continuous monitoring," Renewable Energy, Elsevier, vol. 36(5), pages 1502-1509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    2. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    3. Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
    4. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    5. Yu-Chung Tsao & Thuy-Linh Vu, 2023. "Electricity pricing, capacity, and predictive maintenance considering reliability," Annals of Operations Research, Springer, vol. 322(2), pages 991-1011, March.
    6. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    7. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    8. Teng, Wei & Ding, Xian & Zhang, Xiaolong & Liu, Yibing & Ma, Zhiyong, 2016. "Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform," Renewable Energy, Elsevier, vol. 93(C), pages 591-598.
    9. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    10. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    11. Pinciroli, Luca & Baraldi, Piero & Ballabio, Guido & Compare, Michele & Zio, Enrico, 2022. "Optimization of the Operation and Maintenance of renewable energy systems by Deep Reinforcement Learning," Renewable Energy, Elsevier, vol. 183(C), pages 752-763.
    12. Ossai, Chinedu I. & Boswell, Brian & Davies, Ian J., 2014. "Sustainable asset integrity management: Strategic imperatives for economic renewable energy generation," Renewable Energy, Elsevier, vol. 67(C), pages 143-152.
    13. Zhuoqi Zhang & Su Wu & Binfeng Li & Seungchul Lee, 2015. "(, ) type maintenance policy for multi-component systems with failure interactions," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(6), pages 1051-1064, April.
    14. Kandukuri, Surya Teja & Klausen, Andreas & Karimi, Hamid Reza & Robbersmyr, Kjell Gunnar, 2016. "A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 697-708.
    15. Zhang, Xiaohong & Zeng, Jianchao, 2017. "Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 479-498.
    16. Bakir, I. & Yildirim, M. & Ursavas, E., 2021. "An integrated optimization framework for multi-component predictive analytics in wind farm operations & maintenance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Xia, Tangbin & Dong, Yifan & Pan, Ershun & Zheng, Meimei & Wang, Hao & Xi, Lifeng, 2021. "Fleet-level opportunistic maintenance for large-scale wind farms integrating real-time prognostic updating," Renewable Energy, Elsevier, vol. 163(C), pages 1444-1454.
    18. Do, M. Hung & Söffker, Dirk, 2021. "State-of-the-art in integrated prognostics and health management control for utility-scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Kui Wang & Chao Deng & Lili Ding, 2020. "Optimal Condition-Based Maintenance Strategy for Multi-Component Systems under Degradation Failures," Energies, MDPI, vol. 13(17), pages 1-12, August.
    20. Li, Jianlan & Zhang, Xuran & Zhou, Xing & Lu, Luyi, 2019. "Reliability assessment of wind turbine bearing based on the degradation-Hidden-Markov model," Renewable Energy, Elsevier, vol. 132(C), pages 1076-1087.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:45:y:2012:i:c:p:175-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.