IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v208y2021ics0951832020308486.html
   My bibliography  Save this article

Reliability modeling and evaluation of lifetime delayed degradation process with nondestructive testing

Author

Listed:
  • Li, Zan
  • Wang, Fengming
  • Wang, Chengjie
  • Hu, Qingpei
  • Yu, Dan

Abstract

The sequential hard and soft failure mode, a typical failure phenomenon, involves degradation that starts after an initiation period. According to this situation, a random initiation effect is introduced to the normal degradation stage. Intuitively, a lifetime delayed degradation process (LDDP) provides a general framework for this typical complex failure mode. In the present study, general reliability inference approaches involving the joint likelihood function are developed for the LDDP with repeated measurements, according to the expectation maximization (EM) and stochastic EM algorithms, along with numerical simulations and practical application based on real data. Additionally, statistical inferences were obtained using a bootstrap method on the basis of parameter estimations. The proposed method was compared with the traditional two-step strategy under different sample sizes and inspection frequencies and exhibited enhanced performance.

Suggested Citation

  • Li, Zan & Wang, Fengming & Wang, Chengjie & Hu, Qingpei & Yu, Dan, 2021. "Reliability modeling and evaluation of lifetime delayed degradation process with nondestructive testing," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:reensy:v:208:y:2021:i:c:s0951832020308486
    DOI: 10.1016/j.ress.2020.107358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020308486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiujie Zhao & Olivier Gaudoin & Laurent Doyen & Min Xie, 2019. "Optimal inspection and replacement policy based on experimental degradation data with covariates," IISE Transactions, Taylor & Francis Journals, vol. 51(3), pages 322-336, March.
    2. Bae, Suk Joo & Kuo, Way & Kvam, Paul H., 2007. "Degradation models and implied lifetime distributions," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 601-608.
    3. Guo, Jingbo & Wang, Changxi & Cabrera, Javier & Elsayed, Elsayed A., 2018. "Improved inverse Gaussian process and bootstrap: Degradation and reliability metrics," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 269-277.
    4. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
    5. Ling, M.H. & Ng, H.K.T. & Tsui, K.L., 2019. "Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 77-85.
    6. Ye, Zhi-Sheng & Chen, Nan & Shen, Yan, 2015. "A new class of Wiener process models for degradation analysis," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 58-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Yang, Xiuzhen & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Ai, Jun, 2022. "Integrated mission reliability modeling based on extended quality state task network for intelligent multistate manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Wang, Han & Liao, Haitao & Ma, Xiaobing, 2022. "Stochastic Multi-phase Modeling and Health Assessment for Systems Based on Degradation Branching Processes," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Yan, Weian & Xu, Xiaofan & Bigaud, David & Cao, Wenqin, 2023. "Optimal design of step-stress accelerated degradation tests based on the Tweedie exponential dispersion process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Wang, Wenzhuo & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Zheng, Xin & Zhao, Yu, 2022. "Mission reliability driven functional healthy state modeling approach considering production rhythm and workpiece quality for manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    8. Chen, Yinuo & Tian, Zhigang & He, Rui & Wang, Yifei & Xie, Shuyi, 2023. "Discovery of potential risks for the gas transmission station using monitoring data and the OOBN method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    9. Wang, Chao & Zhu, Tao & Yang, Bing & Yin, Minxuan & Xiao, Shoune & Yang, Guangwu, 2023. "Remaining useful life prediction framework for crack propagation with a case study of railway heavy duty coupler condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Xu, Xiaodong & Tang, Shengjin & Yu, Chuanqiang & Xie, Jian & Han, Xuebing & Ouyang, Minggao, 2021. "Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    11. He, Jiabei & Tian, Yi & Wu, Lifeng, 2022. "A hybrid data-driven method for rapid prediction of lithium-ion battery capacity," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salem, Marwa Belhaj & Fouladirad, Mitra & Deloux, Estelle, 2022. "Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Hui-Ying Wang & Zhao-Qiang Wang, 2022. "A condition-based preventive replacement policy with imperfect manual inspection for a two-stage deterioration process," Journal of Risk and Reliability, , vol. 236(2), pages 225-236, April.
    3. Peihua Jiang, 2022. "Statistical Inference of Wiener Constant-Stress Accelerated Degradation Model with Random Effects," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    4. Li, Xiao-Yang & Chen, Da-Yu & Wu, Ji-Peng & Kang, Rui, 2022. "3-Dimensional general ADT modeling and analysis: Considering epistemic uncertainties in unit, time and stress dimension," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Yang, Yiming & Peng, Jianxin & Cai, C.S. & Zhou, Yadong & Wang, Lei & Zhang, Jianren, 2022. "Time-dependent reliability assessment of aging structures considering stochastic resistance degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Zhang, Fode & Ng, Hon Keung Tony & Shi, Yimin, 2020. "Mis-specification analysis of Wiener degradation models by using f-divergence with outliers," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.
    8. Wang, Huan & Wang, Guan-jun & Duan, Feng-jun, 2016. "Planning of step-stress accelerated degradation test based on the inverse Gaussian process," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 97-105.
    9. Xu, Jun & Liang, Zhenglin & Li, Yan-Fu & Wang, Kaibo, 2021. "Generalized condition-based maintenance optimization for multi-component systems considering stochastic dependency and imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    10. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
    11. Lin, Chun Pang & Ling, Man Ho & Cabrera, Javier & Yang, Fangfang & Yu, Denis Yau Wai & Tsui, Kwok Leung, 2021. "Prognostics for lithium-ion batteries using a two-phase gamma degradation process model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Dong, Wenjie & Liu, Sifeng & Bae, Suk Joo & Cao, Yingsai, 2021. "Reliability modelling for multi-component systems subject to stochastic deterioration and generalized cumulative shock damages," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. Hu, Jiawen & Chen, Piao, 2020. "Predictive maintenance of systems subject to hard failure based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    14. Weichao Yu & Xianbin Zheng & Weihe Huang & Qingwen Cai & Jie Guo & Jili Xu & Yang Liu & Jing Gong & Hong Yang, 2022. "A Data-Driven Methodology for the Reliability Analysis of the Natural Gas Compressor Unit Considering Multiple Failure Modes," Energies, MDPI, vol. 15(10), pages 1-18, May.
    15. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    16. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    17. Zhang, Jianchun & Zhao, Yu & Ma, Xiaobing, 2020. "Reliability modeling methods for load-sharing k-out-of-n system subject to discrete external load," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    18. Maxim Finkelstein & Ji Hwan Cha, 2022. "Reducing degradation and age of items in imperfect repair modeling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1058-1081, December.
    19. Xudan Chen & Guoxun Ji & Xinli Sun & Zhen Li, 2019. "Inverse Gaussian–based model with measurement errors for degradation analysis," Journal of Risk and Reliability, , vol. 233(6), pages 1086-1098, December.
    20. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:208:y:2021:i:c:s0951832020308486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.