IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v205y2021ics0951832020307596.html
   My bibliography  Save this article

Reliability modelling for multi-component systems subject to stochastic deterioration and generalized cumulative shock damages

Author

Listed:
  • Dong, Wenjie
  • Liu, Sifeng
  • Bae, Suk Joo
  • Cao, Yingsai

Abstract

For a complex system consisting of multiple components, it is often unrealistic that one type of environmental shocks affects all the components at the same time. Correspondingly, random shocks are categorized into several distinct sets according to their functions, attributes or sizes. This study develops generalized reliability models for multi-component systems, where each component is subject to two dependent competing failure processes, i.e., a soft failure process caused jointly by internal performance degradation and an incremental damage due to effective external shock sets, and a hard failure process caused by the same random shocks. A damage improvement coefficient and a damage aggravation coefficient are respectively introduced to extend the standard cumulative shock damage model into two more generalized shock cases. Analytical representations of system reliability for a series–parallel system and a parallel–series system are derived based on a gamma to normal distribution approximation approach. To quantitatively compare the effects of these two damage coefficients, a block replacement policy is further adopted by searching for the optimal replacement intervals with a Nelder–Mead downhill simplex method. Finally, an illustrative example of micro-electro-mechanical systems (MEMS) consisting of four silicon micro-mechanical resonators is provided to examine the effects of self-healing ability in the materials of polymer binder on system reliability and replacement period.

Suggested Citation

  • Dong, Wenjie & Liu, Sifeng & Bae, Suk Joo & Cao, Yingsai, 2021. "Reliability modelling for multi-component systems subject to stochastic deterioration and generalized cumulative shock damages," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307596
    DOI: 10.1016/j.ress.2020.107260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020307596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Mengfei & Zeng, Zhiguo & Zio, Enrico & Kang, Rui & Chen, Ying, 2018. "A stochastic hybrid systems model of common-cause failures of degrading components," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 159-170.
    2. Song, Sanling & Coit, David W. & Feng, Qianmei, 2014. "Reliability for systems of degrading components with distinct component shock sets," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 115-124.
    3. Sanling Song & David W. Coit & Qianmei Feng, 2016. "Reliability analysis of multiple-component series systems subject to hard and soft failures with dependent shock effects," IISE Transactions, Taylor & Francis Journals, vol. 48(8), pages 720-735, August.
    4. Rafiee, Koosha & Feng, Qianmei & Coit, David W., 2017. "Reliability assessment of competing risks with generalized mixed shock models," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 1-11.
    5. Zhao, Xian & Guo, Xiaoxin & Wang, Xiaoyue, 2018. "Reliability and maintenance policies for a two-stage shock model with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 185-194.
    6. Khac Tuan Huynh & Anne Barros & Christophe Bérenguer & Inma T. Castro, 2011. "A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events," Post-Print hal-00790728, HAL.
    7. Koosha Rafiee & Qianmei Feng & David Coit, 2014. "Reliability modeling for dependent competing failure processes with changing degradation rate," IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 483-496.
    8. Huynh, K.T. & Barros, A. & Bérenguer, C. & Castro, I.T., 2011. "A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 497-508.
    9. Xiao Liu & Loon Ching Tang, 2016. "Reliability analysis and spares provisioning for repairable systems with dependent failure processes and a time-varying installed base," IISE Transactions, Taylor & Francis Journals, vol. 48(1), pages 43-56, January.
    10. Zhu, Y. & Elsayed, E.A. & Liao, H. & Chan, L.Y., 2010. "Availability optimization of systems subject to competing risk," European Journal of Operational Research, Elsevier, vol. 202(3), pages 781-788, May.
    11. Bae, Suk Joo & Kuo, Way & Kvam, Paul H., 2007. "Degradation models and implied lifetime distributions," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 601-608.
    12. Che, Haiyang & Zeng, Shengkui & Guo, Jianbin & Wang, Yao, 2018. "Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 168-178.
    13. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Bivariate preventive maintenance of systems with lifetimes dependent on a random shock process," European Journal of Operational Research, Elsevier, vol. 266(1), pages 122-134.
    14. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
    15. Hao Peng & Qianmei Feng & David Coit, 2010. "Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes," IISE Transactions, Taylor & Francis Journals, vol. 43(1), pages 12-22.
    16. Fan, Mengfei & Zeng, Zhiguo & Zio, Enrico & Kang, Rui, 2017. "Modeling dependent competing failure processes with degradation-shock dependence," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 422-430.
    17. Zhi‐Sheng Ye & Min Xie, 2015. "Rejoinder to ‘Stochastic modelling and analysis of degradation for highly reliable products’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 35-36, January.
    18. Zhi‐Sheng Ye & Min Xie, 2015. "Stochastic modelling and analysis of degradation for highly reliable products," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 16-32, January.
    19. Yan-Hui Lin & Yan-Fu Li & Enrico Zio, 2016. "Reliability assessment of systems subject to dependent degradation processes and random shocks," IISE Transactions, Taylor & Francis Journals, vol. 48(11), pages 1072-1085, November.
    20. Zhou, Xiaojun & Wu, Changjie & Li, Yanting & Xi, Lifeng, 2016. "A preventive maintenance model for leased equipment subject to internal degradation and external shock damage," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Fengming & Cui, Lirong & Ye, Zhisheng & Zhou, Yu, 2024. "Reliability analysis for systems with self-healing mechanism in degradation-shock dependence processes with changing degradation rate," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Wu, Bei & Zhang, Yamei & Zhao, Songzheng, 2023. "Modeling coupled effects of dynamic environments and zoned shocks on systems under dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Qiao, Peirui & Ma, Yizhong & Luo, Ming & Shen, Jingyuan & Zhou, Hanting, 2024. "Reliability modeling and warranty optimization for products with self-healing under a dynamic shock environment," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    4. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    5. Shamstabar, Yousof & Shahriari, Hamid & Samimi, Yaser, 2021. "Reliability monitoring of systems with cumulative shock-based deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Jiang, Shan & Jia, Xujie, 2024. "Reliability assessment under continuous fatigue degradation and shock based on Markov renewal process," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    8. Wu, Bei & Wei, Xiaohua & Zhang, Yamei & Bai, Sijun, 2023. "Modeling dynamic environment effects on dependent failure processes with varying failure thresholds," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Wei, Xiaohua & Bai, Sijun & Wu, Bei, 2023. "A novel shock-dependent preventive maintenance policy for degraded systems subject to dynamic environments and N-critical shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Gao, Hongda & Cui, Lirong & Qiu, Qingan, 2019. "Reliability modeling for degradation-shock dependence systems with multiple species of shocks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 133-143.
    3. Che, Haiyang & Zeng, Shengkui & Guo, Jianbin & Wang, Yao, 2018. "Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 168-178.
    4. Hu, Jiawen & Shen, Jingyuan & Shen, Lijuan, 2020. "Opportunistic maintenance for two-component series systems subject to dependent degradation and shock," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    6. Jingyi Liu & Yugang Zhang & Bifeng Song, 2019. "Reliability and maintenance modeling for competing failures with intermission considered," Journal of Risk and Reliability, , vol. 233(5), pages 898-907, October.
    7. Sun, Fuqiang & Li, Hao & Cheng, Yuanyuan & Liao, Haitao, 2021. "Reliability analysis for a system experiencing dependent degradation processes and random shocks based on a nonlinear Wiener process model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    9. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    10. Yousefi, Nooshin & Coit, David W. & Song, Sanling, 2020. "Reliability analysis of systems considering clusters of dependent degrading components," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    11. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    12. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Cai, Kui, 2018. "A multi-state shock model with mutative failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 1-11.
    13. Wang, Jia & Bai, Guanghan & Li, Zhigang & Zuo, Ming J., 2020. "A general discrete degradation model with fatal shocks and age- and state-dependent nonfatal shocks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Wei, Xiaohua & Bai, Sijun & Wu, Bei, 2023. "A novel shock-dependent preventive maintenance policy for degraded systems subject to dynamic environments and N-critical shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    15. Qingan Qiu & Lirong Cui & Dejing Kong, 2019. "Availability and maintenance modeling for a two-component system with dependent failures over a finite time horizon," Journal of Risk and Reliability, , vol. 233(2), pages 200-210, April.
    16. Wu, Bei & Zhang, Yamei & Zhao, Songzheng, 2023. "Modeling coupled effects of dynamic environments and zoned shocks on systems under dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Kang, Fengming & Cui, Lirong & Ye, Zhisheng & Zhou, Yu, 2024. "Reliability analysis for systems with self-healing mechanism in degradation-shock dependence processes with changing degradation rate," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    18. Kong, Xuefeng & Yang, Jun, 2020. "Reliability analysis of composite insulators subject to multiple dependent competing failure processes with shock duration and shock damage self-recovery," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Geng, Yixuan & Wang, Shaoping & Shi, Jian & Zhang, Yuwei & Wang, Weijie, 2023. "Reliability modeling of phased degradation under external shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    20. Cao, Yingsai & Liu, Sifeng & Fang, Zhigeng & Dong, Wenjie, 2020. "Modeling ageing effects for multi-state systems with multiple components subject to competing and dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.