IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v223y2022ics0951832022001569.html
   My bibliography  Save this article

Integrated mission reliability modeling based on extended quality state task network for intelligent multistate manufacturing systems

Author

Listed:
  • Yang, Xiuzhen
  • He, Yihai
  • Liao, Ruoyu
  • Cai, Yuqi
  • Ai, Jun

Abstract

The quality of produced WIP(work-in-process) is the direct indicator of operational reliability of manufacturing system. To assure the predictability of the reliability of finished products is the paramount goal for the operation and maintenance of intelligent manufacturing systems. Therefore, a novel integrated mission reliability modeling approach based on extended quality state task network (EQSTN) for intelligent multistate manufacturing systems is proposed in this paper. First, to guarantee the reliability of final produced products, the relationship between the manufacturing system reliability and the produced product reliability is explained from the systematic perspective. The connotation of integrated mission reliability of intelligent multistate manufacturing systems is also provided. Second, an EQSTN is proposed based on operational quality data by extending the traditional dimensional conformance quality to functional fitness quality. Third, based on the established EQSTN, an integrated mission reliability modeling approach is proposed to quantitate the operational healthy state of the intelligent manufacturing system dynamically. Finally, a case study of an intelligent multistate manufacturing system for a ball screw pair is conducted to verify the proposed approach.

Suggested Citation

  • Yang, Xiuzhen & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Ai, Jun, 2022. "Integrated mission reliability modeling based on extended quality state task network for intelligent multistate manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:reensy:v:223:y:2022:i:c:s0951832022001569
    DOI: 10.1016/j.ress.2022.108495
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022001569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye, Zhenggeng & Cai, Zhiqiang & Zhou, Fuli & Zhao, Jiangbin & Zhang, Pan, 2019. "Reliability analysis for series manufacturing system with imperfect inspection considering the interaction between quality and degradation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 345-356.
    2. Shi, Yue & Zhu, Weihang & Xiang, Yisha & Feng, Qianmei, 2020. "Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Kowal, Karol & Torabi, Mina, 2021. "Failure mode and reliability study for Electrical Facility of the High Temperature Engineering Test Reactor," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. He, Yihai & Zhao, Yixiao & Han, Xiao & Zhou, Di & Wang, Wenzhuo, 2020. "Functional risk-oriented health prognosis approach for intelligent manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    5. Zhaoxiang Chen & Yihai He & Yixiao Zhao & Xiao Han & Zhen He & Yu Xu & Anqi Zhang, 2019. "Mission reliability evaluation based on operational quality data for multistate manufacturing systems," International Journal of Production Research, Taylor & Francis Journals, vol. 57(6), pages 1840-1856, March.
    6. Li, Zan & Wang, Fengming & Wang, Chengjie & Hu, Qingpei & Yu, Dan, 2021. "Reliability modeling and evaluation of lifetime delayed degradation process with nondestructive testing," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. GAO, Guibing & ZHOU, Dengming & TANG, Hao & HU, Xin, 2021. "An Intelligent Health diagnosis and Maintenance Decision-making approach in Smart Manufacturing," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Han, Xiao & Wang, Zili & Xie, Min & He, Yihai & Li, Yao & Wang, Wenzhuo, 2021. "Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    9. Yihai He & Changchao Gu & Zhaoxiang Chen & Xiao Han, 2017. "Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5841-5862, October.
    10. Yixiao Zhao & Yihai He & Di Zhou & Anqi Zhang & Xiao Han & Yao Li & Wenzhuo Wang, 2021. "Functional risk-oriented integrated preventive maintenance considering product quality loss for multistate manufacturing systems," International Journal of Production Research, Taylor & Francis Journals, vol. 59(4), pages 1003-1020, February.
    11. Yihai He & Linbo Wang & Zhenzhen He & Xun Xiao, 2016. "Modelling infant failure rate of electromechanical products with multilayered quality variations from manufacturing process," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6594-6612, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Ruoyu & He, Yihai & Feng, Tianyu & Yang, Xiuzhen & Dai, Wei & Zhang, Weifang, 2023. "Mission reliability-driven risk-based predictive maintenance approach of multistate manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Liao, Ruoyu & He, Yihai & Zhang, Jishan & Zheng, Xin & Zhang, Anqi & Zhang, Weifang, 2023. "Reliability proactive control approach based on product key reliability characteristics in manufacturing process," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yao & He, Yihai & Liao, Ruoyu & Zheng, Xin & Dai, Wei, 2022. "Integrated predictive maintenance approach for multistate manufacturing system considering geometric and non-geometric defects of products," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Wang, Wenzhuo & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Zheng, Xin & Zhao, Yu, 2022. "Mission reliability driven functional healthy state modeling approach considering production rhythm and workpiece quality for manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Li, Yao & He, Yihai & Ai, Jun & Wang, Chengcheng & Han, Xiao & Liao, Ruoyu & Yang, Xiuzhen, 2022. "Functional health prognosis approach of multi-station manufacturing system considering coupling operational factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Liao, Ruoyu & He, Yihai & Feng, Tianyu & Yang, Xiuzhen & Dai, Wei & Zhang, Weifang, 2023. "Mission reliability-driven risk-based predictive maintenance approach of multistate manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Yang, Xiuzhen & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Dai, Wei, 2024. "Mission reliability-centered opportunistic maintenance approach for multistate manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Thirupathi Samala & Vijaya Kumar Manupati & Maria Leonilde R. Varela & Goran Putnik, 2021. "Investigation of Degradation and Upgradation Models for Flexible Unit Systems: A Systematic Literature Review," Future Internet, MDPI, vol. 13(3), pages 1-18, February.
    7. Shen, Yilan & Zhang, Xi & Shi, Leyuan, 2022. "Joint optimization of production and maintenance for a serial–parallel hybrid two-stage production system," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Yixiao Zhao & Yihai He & Fengdi Liu & Xiao Han & Anqi Zhang & Di Zhou & Yao Li, 2020. "Operational risk modeling based on operational data fusion for multi-state manufacturing systems," Journal of Risk and Reliability, , vol. 234(2), pages 407-421, April.
    9. Wang, Han & Liao, Haitao & Ma, Xiaobing, 2022. "Stochastic Multi-phase Modeling and Health Assessment for Systems Based on Degradation Branching Processes," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    10. Ye, Zhenggeng & Yang, Hui & Cai, Zhiqiang & Si, Shubin & Zhou, Fuli, 2021. "Performance evaluation of serial-parallel manufacturing systems based on the impact of heterogeneous feedstocks on machine degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Ye, Zhenggeng & Cai, Zhiqiang & Yang, Hui & Si, Shubin & Zhou, Fuli, 2023. "Joint optimization of maintenance and quality inspection for manufacturing networks based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    12. Chen, Zhaoxiang & Chen, Zhen & Zhou, Di & Pan, Ershun, 2023. "Energy-oriented opportunistic maintenance optimization of continuous process manufacturing systems with two types of stochastic durations," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    13. Duan, Chaoqun & Li, Yifan & Pu, Huayan & Luo, Jun, 2022. "Adaptive monitoring scheme of stochastically failing systems under hidden degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    14. Han, Xiao & Wang, Zili & Xie, Min & He, Yihai & Li, Yao & Wang, Wenzhuo, 2021. "Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    15. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    16. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    18. Cheng, Guoqing & Li, Ling, 2020. "Joint optimization of production, quality control and maintenance for serial-parallel multistage production systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    20. Sabri-Laghaie, Kamyar & Fathi, Mahdi & Zio, Enrico & Mazhar, Maryam, 2022. "A novel reliability monitoring scheme based on the monitoring of manufacturing quality error rates," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:223:y:2022:i:c:s0951832022001569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.