IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v230y2023ics0951832022005300.html
   My bibliography  Save this article

Remaining useful life prediction framework for crack propagation with a case study of railway heavy duty coupler condition monitoring

Author

Listed:
  • Wang, Chao
  • Zhu, Tao
  • Yang, Bing
  • Yin, Minxuan
  • Xiao, Shoune
  • Yang, Guangwu

Abstract

A general Remaining useful life (RUL) framework for predicting crack propagation of mechanical system structures based on limited condition monitoring data was proposed. For states of invisible cracks, a method that considers the common characteristics of the object was proposed by using the crack propagation stage as the delay time, combining statistical distribution and hypothesis testing. Then, for the states of visible cracks, methods based on a hypothetical distribution and support vector regression with the Kalman filter considering the current state and individual degradation characteristics were proposed. Finally, taking the condition monitoring data of the coupler body crack state as a case, the RUL prediction from the whole to the individual differences is achieved. The research results indicate that the framework achieves a competitive effect in RUL of internal crack propagation structures of railway wagons, which have important theoretical and practical value for integrity assessment and reliability life prediction.

Suggested Citation

  • Wang, Chao & Zhu, Tao & Yang, Bing & Yin, Minxuan & Xiao, Shoune & Yang, Guangwu, 2023. "Remaining useful life prediction framework for crack propagation with a case study of railway heavy duty coupler condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005300
    DOI: 10.1016/j.ress.2022.108915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022005300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Rui & Verhagen, Wim J.C. & Curran, Richard, 2020. "A systematic methodology for Prognostic and Health Management system architecture definition," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Zang, Yu & Shangguan, Wei & Cai, Baigen & Wang, Huasheng & Pecht, Michael. G., 2021. "Hybrid remaining useful life prediction method. A case study on railway D-cables," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Chen, Zhen & Li, Yaping & Xia, Tangbin & Pan, Ershun, 2019. "Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 123-136.
    4. Jiao, Ruihua & Peng, Kaixiang & Dong, Jie & Zhang, Chuanfang, 2020. "Fault monitoring and remaining useful life prediction framework for multiple fault modes in prognostics," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    5. Li, Zan & Wang, Fengming & Wang, Chengjie & Hu, Qingpei & Yu, Dan, 2021. "Reliability modeling and evaluation of lifetime delayed degradation process with nondestructive testing," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Yan, Tao & Lei, Yaguo & Li, Naipeng & Wang, Biao & Wang, Wenting, 2021. "Degradation modeling and remaining useful life prediction for dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keshun, You & Guangqi, Qiu & Yingkui, Gu, 2024. "Optimizing prior distribution parameters for probabilistic prediction of remaining useful life using deep learning," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Xie, Mingjiang & Wang, Yifei & Zhao, Jianli & Pei, Xianjun & Zhang, Tairui, 2024. "Prediction of pipeline fatigue crack propagation under rockfall impact based on multilayer perceptron," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Marcin Witczak & Marcin Mrugalski & Bogdan Lipiec, 2021. "Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework," Energies, MDPI, vol. 14(8), pages 1-23, April.
    3. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Yaping Li & Enrico Zio & Ershun Pan, 2021. "An MEWMA-based segmental multivariate hidden Markov model for degradation assessment and prediction," Journal of Risk and Reliability, , vol. 235(5), pages 831-844, October.
    5. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Li, Zhanhang & Zhou, Jian & Nassif, Hani & Coit, David & Bae, Jinwoo, 2023. "Fusing physics-inferred information from stochastic model with machine learning approaches for degradation prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Jain, Amit Kumar & Lad, Bhupesh Kumar, 2020. "Prognosticating RULs while exploiting the future characteristics of operating profiles," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    10. Miao, Mengqi & Yu, Jianbo & Zhao, Zhihong, 2022. "A sparse domain adaption network for remaining useful life prediction of rolling bearings under different working conditions," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Chen, Chong & Liu, Ying & Sun, Xianfang & Cairano-Gilfedder, Carla Di & Titmus, Scott, 2021. "An integrated deep learning-based approach for automobile maintenance prediction with GIS data," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Xiang, Sheng & Qin, Yi & Luo, Jun & Pu, Huayan & Tang, Baoping, 2021. "Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Li, Tianfu & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Ding, Yifei & Jia, Minping & Miao, Qiuhua & Huang, Peng, 2021. "Remaining useful life estimation using deep metric transfer learning for kernel regression," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    16. Xu, Danyang & Qiu, Haobo & Gao, Liang & Yang, Zan & Wang, Dapeng, 2022. "A novel dual-stream self-attention neural network for remaining useful life estimation of mechanical systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Asgari, Ali & Si, Wujun & Yuan, Liang & Krishnan, Krishna & Wei, Wei, 2024. "Multivariable degradation modeling and life prediction using multivariate fractional Brownian motion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    18. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Tao, Xin & Mårtensson, Jonas & Warnquist, Håkan & Pernestål, Anna, 2022. "Short-term maintenance planning of autonomous trucks for minimizing economic risk," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    20. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.