IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v200y2020ics0951832019301802.html
   My bibliography  Save this article

Model discrepancy calibration across experimental settings

Author

Listed:
  • Maupin, Kathryn A.
  • Swiler, Laura P.

Abstract

Despite continuing advances in the reliability of computational modeling and simulation, model inadequacy remains a pervasive concern across scientific disciplines. Further challenges are introduced into the already complex problem of “correcting†an inadequate model when experimental data is collected at varying experimental settings. This paper introduces a general approach to calibrating a model discrepancy function when the model is expected to perform for multiple experimental configurations and give predictions as a function of temporal and/or spatial coordinates.

Suggested Citation

  • Maupin, Kathryn A. & Swiler, Laura P., 2020. "Model discrepancy calibration across experimental settings," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:reensy:v:200:y:2020:i:c:s0951832019301802
    DOI: 10.1016/j.ress.2020.106818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019301802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Inseok & Grandhi, Ramana V., 2014. "A Bayesian statistical method for quantifying model form uncertainty and two model combination methods," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 46-56.
    2. Rebba, Ramesh & Mahadevan, Sankaran & Huang, Shuping, 2006. "Validation and error estimation of computational models," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1390-1397.
    3. Sankararaman, Shankar & Mahadevan, Sankaran, 2015. "Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 194-209.
    4. Higdon, Dave & Gattiker, James & Williams, Brian & Rightley, Maria, 2008. "Computer Model Calibration Using High-Dimensional Output," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 570-583, June.
    5. Matthew Plumlee, 2017. "Bayesian Calibration of Inexact Computer Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1274-1285, July.
    6. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    7. J. L. Brown & L. B. Hund, 2018. "Estimating material properties under extreme conditions by using Bayesian model calibration with functional outputs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(4), pages 1023-1045, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, Yongsu & Jo, Hwisang & Choo, Jeonghwan & Lee, Ikjin, 2022. "Statistical model calibration and design optimization under aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Yongsu & Lee, Ikjin, 2021. "Optimal design of experiments for optimization-based model calibration using Fisher information matrix," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Perrin, G., 2020. "Adaptive calibration of a computer code with time-series output," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    3. Ray, Douglas & Ramirez-Marquez, Jose, 2020. "A framework for probabilistic model-based engineering and data synthesis," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Jung, Yongsu & Jo, Hwisang & Choo, Jeonghwan & Lee, Ikjin, 2022. "Statistical model calibration and design optimization under aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    6. Na, Wei & Wang, Mingming, 2022. "A Bayesian approach with urban-scale energy model to calibrate building energy consumption for space heating: A case study of application in Beijing," Energy, Elsevier, vol. 247(C).
    7. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.
    8. Jun Yuan & Haowei Wang & Szu Hui Ng & Victor Nian, 2020. "Ship Emission Mitigation Strategies Choice Under Uncertainty," Energies, MDPI, vol. 13(9), pages 1-20, May.
    9. Wu, Xu & Kozlowski, Tomasz & Meidani, Hadi, 2018. "Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 422-436.
    10. Sun, Yang & Fang, Xiangzhong, 2024. "Efficient calibration of computer models with multivariate output," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    11. Paulo, Rui & García-Donato, Gonzalo & Palomo, Jesús, 2012. "Calibration of computer models with multivariate output," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3959-3974.
    12. Matthew Plumlee, 2014. "Fast Prediction of Deterministic Functions Using Sparse Grid Experimental Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1581-1591, December.
    13. Daniel W. Gladish & Daniel E. Pagendam & Luk J. M. Peeters & Petra M. Kuhnert & Jai Vaze, 2018. "Emulation Engines: Choice and Quantification of Uncertainty for Complex Hydrological Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 39-62, March.
    14. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    15. Bruno Sansó & Chris Forest, 2009. "Statistical calibration of climate system properties," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 485-503, September.
    16. Wilkinson Richard David, 2013. "Approximate Bayesian computation (ABC) gives exact results under the assumption of model error," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(2), pages 129-141, May.
    17. Antony M. Overstall & David C. Woods, 2013. "A Strategy for Bayesian Inference for Computationally Expensive Models with Application to the Estimation of Stem Cell Properties," Biometrics, The International Biometric Society, vol. 69(2), pages 458-468, June.
    18. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2014. "An illustration of the use of an approach for treating model uncertainties in risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 46-53.
    19. Won Chang & Murali Haran & Patrick Applegate & David Pollard, 2016. "Calibrating an Ice Sheet Model Using High-Dimensional Binary Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 57-72, March.
    20. Mohammadi, Hossein & Challenor, Peter & Goodfellow, Marc, 2019. "Emulating dynamic non-linear simulators using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 178-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:200:y:2020:i:c:s0951832019301802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.