IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v58y2009i4p485-503.html
   My bibliography  Save this article

Statistical calibration of climate system properties

Author

Listed:
  • Bruno Sansó
  • Chris Forest

Abstract

Summary. The behaviour of modern climate system simulators is controlled by numerous parameters. By matching model outputs with observed data we can perform inference on such parameters. This is a calibration problem that usually requires the ability to evaluate the computer code at any given configuration of the parameters. As the climate system simulator attempts to describe very complex physical phenomena, the task of running the model is very computationally demanding. Thus, a statistical model is required to approximate the model output. In this work, we use output from the Massachusetts Institute of Technology two‐dimensional climate model (MIT2DCM), historical records and output from a three‐dimensional climate model, to obtain estimates of the climate sensitivity, the effective thermal diffusivity in the deep ocean and the net aerosol forcing that control MIT2DCM. We use a Bayesian approach that allows for the use of scientifically based information on the climate parameters to be used in the calibration process. The model tackles the problem of dealing with multivariate computer model output and incorporates all estimation uncertainties into the posterior distributions of the climate parameters. Additionally we obtain estimates of the correlation structure of the unforced variability of temperature change patterns. These results are critical for understanding uncertainty in future climate change and provide an independent check that the information that is contained in recent climate change is robust to statistical treatment. These results include uncertainties in the estimation of the multivariate covariance matrices.

Suggested Citation

  • Bruno Sansó & Chris Forest, 2009. "Statistical calibration of climate system properties," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 485-503, September.
  • Handle: RePEc:bla:jorssc:v:58:y:2009:i:4:p:485-503
    DOI: 10.1111/j.1467-9876.2009.00669.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2009.00669.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2009.00669.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    2. Claudia Tebaldi & Bruno Sansó, 2009. "Joint projections of temperature and precipitation change from multiple climate models: a hierarchical Bayesian approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 83-106, January.
    3. Myles Allen, 1999. "Do-it-yourself climate prediction," Nature, Nature, vol. 401(6754), pages 642-642, October.
    4. Higdon, Dave & Gattiker, James & Williams, Brian & Rightley, Maria, 2008. "Computer Model Calibration Using High-Dimensional Output," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 570-583, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvador Pueyo, 2012. "Solution to the paradox of climate sensitivity," Climatic Change, Springer, vol. 113(2), pages 163-179, July.
    2. Travaglini, Guido, 2014. "Testing the hockey-stick hypothesis by statistical analyses of a large dataset of proxy records," MPRA Paper 55835, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    3. Hwang, Youngdeok & Kim, Hang J. & Chang, Won & Yeo, Kyongmin & Kim, Yongku, 2019. "Bayesian pollution source identification via an inverse physics model," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 76-92.
    4. Kim, Wongon & Yoon, Heonjun & Lee, Guesuk & Kim, Taejin & Youn, Byeng D., 2020. "A new calibration metric that considers statistical correlation: Marginal Probability and Correlation Residuals," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    5. K. Sham Bhat & David S. Mebane & Priyadarshi Mahapatra & Curtis B. Storlie, 2017. "Upscaling Uncertainty with Dynamic Discrepancy for a Multi-Scale Carbon Capture System," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1453-1467, October.
    6. McClarren, Ryan G. & Ryu, D. & Paul Drake, R. & Grosskopf, Michael & Bingham, Derek & Chou, Chuan-Chih & Fryxell, Bruce & van der Holst, Bart & Paul Holloway, James & Kuranz, Carolyn C. & Mallick, Ban, 2011. "A physics informed emulator for laser-driven radiating shock simulations," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1194-1207.
    7. Wilkinson Richard David, 2013. "Approximate Bayesian computation (ABC) gives exact results under the assumption of model error," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(2), pages 129-141, May.
    8. Antony M. Overstall & David C. Woods, 2013. "A Strategy for Bayesian Inference for Computationally Expensive Models with Application to the Estimation of Stem Cell Properties," Biometrics, The International Biometric Society, vol. 69(2), pages 458-468, June.
    9. Sudipto Banerjee, 2023. "Discussion of “Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach” by Huang Huang, Stefano Castruccio, Allison H. Baker and Marc Genton," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 365-369, June.
    10. Matthew Plumlee & V. Roshan Joseph & Hui Yang, 2016. "Calibrating Functional Parameters in the Ion Channel Models of Cardiac Cells," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 500-509, April.
    11. Won Chang & Murali Haran & Patrick Applegate & David Pollard, 2016. "Calibrating an Ice Sheet Model Using High-Dimensional Binary Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 57-72, March.
    12. Ioannis Andrianakis & Ian R Vernon & Nicky McCreesh & Trevelyan J McKinley & Jeremy E Oakley & Rebecca N Nsubuga & Michael Goldstein & Richard G White, 2015. "Bayesian History Matching of Complex Infectious Disease Models Using Emulation: A Tutorial and a Case Study on HIV in Uganda," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-18, January.
    13. Samantha M. Roth & Ben Seiyon Lee & Sanjib Sharma & Iman Hosseini‐Shakib & Klaus Keller & Murali Haran, 2023. "Flood hazard model calibration using multiresolution model output," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    14. Mohammadi, Hossein & Challenor, Peter & Goodfellow, Marc, 2019. "Emulating dynamic non-linear simulators using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 178-196.
    15. Perrin, G., 2020. "Adaptive calibration of a computer code with time-series output," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    16. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.
    17. Mevin Hooten & Christopher Wikle & Michael Schwob, 2020. "Statistical Implementations of Agent‐Based Demographic Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 441-461, August.
    18. Williams, Brian J. & Loeppky, Jason L. & Moore, Leslie M. & Macklem, Mason S., 2011. "Batch sequential design to achieve predictive maturity with calibrated computer models," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1208-1219.
    19. Luca Aiello & Matteo Fontana & Alessandra Guglielmi, 2023. "Bayesian functional emulation of CO2 emissions on future climate change scenarios," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    20. Leatherman, Erin R. & Dean, Angela M. & Santner, Thomas J., 2017. "Designing combined physical and computer experiments to maximize prediction accuracy," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 346-362.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:4:p:485-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.