IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v91y2006i10p1390-1397.html
   My bibliography  Save this article

Validation and error estimation of computational models

Author

Listed:
  • Rebba, Ramesh
  • Mahadevan, Sankaran
  • Huang, Shuping

Abstract

This paper develops a Bayesian methodology for assessing the confidence in model prediction by comparing the model output with experimental data when both are stochastic. The prior distribution of the response is first computed, which is then updated based on experimental observation using Bayesian analysis to compute a validation metric. A model error estimation methodology is then developed to include model form error, discretization error, stochastic analysis error (UQ error), input data error and output measurement error. Sensitivity of the validation metric to various error components and model parameters is discussed. A numerical example is presented to illustrate the proposed methodology.

Suggested Citation

  • Rebba, Ramesh & Mahadevan, Sankaran & Huang, Shuping, 2006. "Validation and error estimation of computational models," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1390-1397.
  • Handle: RePEc:eee:reensy:v:91:y:2006:i:10:p:1390-1397
    DOI: 10.1016/j.ress.2005.11.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832005002486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2005.11.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling, You & Mahadevan, Sankaran, 2013. "Quantitative model validation techniques: New insights," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 217-231.
    2. Sankararaman, Shankar & Mahadevan, Sankaran, 2011. "Model validation under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1232-1241.
    3. Sankararaman, Shankar & Mahadevan, Sankaran, 2015. "Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 194-209.
    4. Ray, Douglas & Ramirez-Marquez, Jose, 2020. "A framework for probabilistic model-based engineering and data synthesis," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. An, Dawn & Kim, Nam H. & Choi, Joo-Ho, 2015. "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 223-236.
    6. Ao, Dan & Hu, Zhen & Mahadevan, Sankaran, 2017. "Design of validation experiments for life prediction models," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 22-33.
    7. Mullins, Joshua & Ling, You & Mahadevan, Sankaran & Sun, Lin & Strachan, Alejandro, 2016. "Separation of aleatory and epistemic uncertainty in probabilistic model validation," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 49-59.
    8. Maupin, Kathryn A. & Swiler, Laura P., 2020. "Model discrepancy calibration across experimental settings," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    9. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2014. "An illustration of the use of an approach for treating model uncertainties in risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 46-53.
    10. Trivedi, Chirag & Cervantes, Michel J., 2017. "Fluid-structure interactions in Francis turbines: A perspective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 87-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:91:y:2006:i:10:p:1390-1397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.