IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i519p1274-1285.html
   My bibliography  Save this article

Bayesian Calibration of Inexact Computer Models

Author

Listed:
  • Matthew Plumlee

Abstract

Bayesian calibration is used to study computer models in the presence of both a calibration parameter and model bias. The parameter in the predominant methodology is left undefined. This results in an issue, where the posterior of the parameter is suboptimally broad. There has been no generally accepted alternatives to date. This article proposes using Bayesian calibration, where the prior distribution on the bias is orthogonal to the gradient of the computer model. Problems associated with Bayesian calibration are shown to be mitigated through analytic results in addition to examples. Supplementary materials for this article are available online.

Suggested Citation

  • Matthew Plumlee, 2017. "Bayesian Calibration of Inexact Computer Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1274-1285, July.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1274-1285
    DOI: 10.1080/01621459.2016.1211016
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1211016
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1211016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew Plumlee & V. Roshan Joseph & Hui Yang, 2016. "Calibrating Functional Parameters in the Ion Channel Models of Cardiac Cells," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 500-509, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Yuan & Haowei Wang & Szu Hui Ng & Victor Nian, 2020. "Ship Emission Mitigation Strategies Choice Under Uncertainty," Energies, MDPI, vol. 13(9), pages 1-20, May.
    2. Maupin, Kathryn A. & Swiler, Laura P., 2020. "Model discrepancy calibration across experimental settings," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Wang, Bo & Zhang, Qiong & Xie, Wei, 2019. "Bayesian sequential data collection for stochastic simulation calibration," European Journal of Operational Research, Elsevier, vol. 277(1), pages 300-316.
    4. Na, Wei & Wang, Mingming, 2022. "A Bayesian approach with urban-scale energy model to calibrate building energy consumption for space heating: A case study of application in Beijing," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1274-1285. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.