IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i9p1453-d1473228.html
   My bibliography  Save this article

Unveiling the Role of Climate and Environmental Dynamics in Shaping Forest Fire Patterns in Northern Zagros, Iran

Author

Listed:
  • Hadi Beygi Heidarlou

    (Forestry Department, Faculty of Natural Resources, Urmia University, Urmia P.O. Box 165, Iran)

  • Melina Gholamzadeh Bazarbash

    (Forestry Department, Faculty of Natural Resources, Urmia University, Urmia P.O. Box 165, Iran)

  • Stelian Alexandru Borz

    (Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements, Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, 500123 Brasov, Romania)

Abstract

Wildfires present a major global environmental issue, exacerbated by climate change. The Iranian Northern Zagros Forests, characterized by a Mediterranean climate, are particularly vulnerable to fires during hot, dry summers. This study investigates the impact of climate change on forest fires in these forests from 2006 to 2023. The analysis revealed significant year-to-year fluctuations, with notable fire occurrence in years 2007, 2010, 2021, and 2023. The largest burned area occurred in 2021, covering 2655.66 ha, while 2006 had the smallest burned area of 175.27 ha. Climate variables such as temperature, humidity, precipitation, wind speed, heat waves, and solar radiation were assessed for their effects on fire behavior. Strong correlations were found between higher average temperatures and larger burned areas, as well as between heat waves and increased fire frequency. Additionally, higher wind speeds were linked to larger burned areas, suggesting that increased wind speeds may enhance fire spread. Multiple linear regression models demonstrated high predictive accuracy, explaining 84% of the variance in burned areas and 69.6% in the variance in fire frequency. These findings document the growing wildfire risk in the Northern Zagros region due to climate change, highlighting the urgent need to integrate scientific research with policies to develop effective wildfire management strategies for sustainable forest management.

Suggested Citation

  • Hadi Beygi Heidarlou & Melina Gholamzadeh Bazarbash & Stelian Alexandru Borz, 2024. "Unveiling the Role of Climate and Environmental Dynamics in Shaping Forest Fire Patterns in Northern Zagros, Iran," Land, MDPI, vol. 13(9), pages 1-19, September.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1453-:d:1473228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/9/1453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/9/1453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Max A. Moritz & Enric Batllori & Ross A. Bradstock & A. Malcolm Gill & John Handmer & Paul F. Hessburg & Justin Leonard & Sarah McCaffrey & Dennis C. Odion & Tania Schoennagel & Alexandra D. Syphard, 2014. "Learning to coexist with wildfire," Nature, Nature, vol. 515(7525), pages 58-66, November.
    2. M. Flannigan & B. Wotton & G. Marshall & W. de Groot & J. Johnston & N. Jurko & A. Cantin, 2016. "Fuel moisture sensitivity to temperature and precipitation: climate change implications," Climatic Change, Springer, vol. 134(1), pages 59-71, January.
    3. Peter Nojarov & Mariyana Nikolova, 2022. "Heat waves and forest fires in Bulgaria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1879-1899, November.
    4. M. D. Flannigan & B. M. Wotton & G. A. Marshall & W. J. de Groot & J. Johnston & N. Jurko & A. S. Cantin, 2016. "Fuel moisture sensitivity to temperature and precipitation: climate change implications," Climatic Change, Springer, vol. 134(1), pages 59-71, January.
    5. Tiffany Smith & Benjamin Zaitchik & Julia Gohlke, 2013. "Heat waves in the United States: definitions, patterns and trends," Climatic Change, Springer, vol. 118(3), pages 811-825, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Megan C. Kirchmeier-Young & Francis W. Zwiers & Nathan P. Gillett & Alex J. Cannon, 2017. "Attributing extreme fire risk in Western Canada to human emissions," Climatic Change, Springer, vol. 144(2), pages 365-379, September.
    2. Anuj Tiwari & Mohammad Shoab & Abhilasha Dixit, 2021. "GIS-based forest fire susceptibility modeling in Pauri Garhwal, India: a comparative assessment of frequency ratio, analytic hierarchy process and fuzzy modeling techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1189-1230, January.
    3. Nobel, Anne & Lizin, Sebastien & Witters, Nele & Rineau, Francois & Malina, Robert, 2020. "The impact of wildfires on the recreational value of heathland: A discrete factor approach with adjustment for on-site sampling," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    4. Aydin Azizi, 2018. "Computer-Based Analysis of the Stochastic Stability of Mechanical Structures Driven by White and Colored Noise," Sustainability, MDPI, vol. 10(10), pages 1-19, September.
    5. April M. Melvin & Jessica Murray & Brent Boehlert & Jeremy A. Martinich & Lisa Rennels & T. Scott Rupp, 2017. "Estimating wildfire response costs in Alaska’s changing climate," Climatic Change, Springer, vol. 141(4), pages 783-795, April.
    6. Ricci, Federica & Misuri, Alessio & Scarponi, Giordano Emrys & Cozzani, Valerio & Demichela, Micaela, 2024. "Vulnerability Assessment of Industrial Sites to Interface Fires and Wildfires," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Khakzad, Nima, 2019. "Modeling wildfire spread in wildland-industrial interfaces using dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 165-176.
    8. Thomas Buchholz & John Gunn & Bruce Springsteen & Gregg Marland & Max Moritz & David Saah, 2022. "Probability-based accounting for carbon in forests to consider wildfire and other stochastic events: synchronizing science, policy, and carbon offsets," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-21, January.
    9. Scheller, Robert & Kretchun, Alec & Hawbaker, Todd J. & Henne, Paul D., 2019. "A landscape model of variable social-ecological fire regimes," Ecological Modelling, Elsevier, vol. 401(C), pages 85-93.
    10. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).
    11. Górriz-Mifsud, Elena & Burns, Matthew & Marini Govigli, Valentino, 2019. "Civil society engaged in wildfires: Mediterranean forest fire volunteer groupings," Forest Policy and Economics, Elsevier, vol. 102(C), pages 119-129.
    12. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    13. Larsson, Karl, 2023. "Parametric heat wave insurance," Journal of Commodity Markets, Elsevier, vol. 31(C).
    14. Van Butsic & Maggi Kelly & Max A. Moritz, 2015. "Land Use and Wildfire: A Review of Local Interactions and Teleconnections," Land, MDPI, vol. 4(1), pages 1-17, February.
    15. Jintao Zhang & Fang Wang, 2019. "Regional Temperature Response in Central Asia to National Committed Emission Reductions," IJERPH, MDPI, vol. 16(15), pages 1-15, July.
    16. Wang, Ning & Zhao, Shiyue & Wang, Sutong, 2024. "A novel clustering-based resampling with cost-sensitive boosting method to model and map wildfire susceptibility," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Ji Yun Lee & Fangjiao Ma & Yue Li, 2022. "Understanding homeowner proactive actions for managing wildfire risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1525-1547, November.
    18. Yanfeng Wang & Ping Huang, 2022. "Potential fire risks in South America under anthropogenic forcing hidden by the Atlantic Multidecadal Oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. K. Oleson & A. Monaghan & O. Wilhelmi & M. Barlage & N. Brunsell & J. Feddema & L. Hu & D. Steinhoff, 2015. "Interactions between urbanization, heat stress, and climate change," Climatic Change, Springer, vol. 129(3), pages 525-541, April.
    20. Zheng, Zhonghua & Zhao, Lei & Oleson, Keith W., 2020. "Large model parameter and structural uncertainties in global projections of urban heat waves," Earth Arxiv f5pwa, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1453-:d:1473228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.