IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v159y2017icp47-57.html
   My bibliography  Save this article

A state-space-based prognostics model for lithium-ion battery degradation

Author

Listed:
  • Xu, Xin
  • Chen, Nan

Abstract

This paper proposes to analyze the degradation of lithium-ion batteries with the sequentially observed discharging profiles. A general state-space model is developed in which the observation model is used to approximate the discharging profile of each cycle, the corresponding parameter vector is treated as the hidden state, and the state-transition model is used to track the evolution of the parameter vector as the battery ages. The EM and EKF algorithms are adopted to estimate and update the model parameters and states jointly. Based on this model, we construct prediction on the end of discharge times for unobserved cycles and the remaining useful cycles before the battery failure. The effectiveness of the proposed model is demonstrated using a real lithium-ion battery degradation data set.

Suggested Citation

  • Xu, Xin & Chen, Nan, 2017. "A state-space-based prognostics model for lithium-ion battery degradation," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 47-57.
  • Handle: RePEc:eee:reensy:v:159:y:2017:i:c:p:47-57
    DOI: 10.1016/j.ress.2016.10.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016307207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.10.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carmen Carnero, María & José Pedregal, Diego, 2010. "Modelling and forecasting occupational accidents of different severity levels in Spain," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1134-1141.
    2. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    3. Pedregal, Diego J. & Carmen Carnero, Ma, 2006. "State space models for condition monitoring: a case study," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 171-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Bo & Zhang, Weige & Zhang, Yanru & Zhang, Caiping & Zhang, Chi & Zhang, Junwei, 2024. "Research on the remaining useful life prediction method for lithium-ion batteries by fusion of feature engineering and deep learning," Applied Energy, Elsevier, vol. 358(C).
    2. Chen, Dinghong & Zhang, Weige & Zhang, Caiping & Sun, Bingxiang & Cong, XinWei & Wei, Shaoyuan & Jiang, Jiuchun, 2022. "A novel deep learning-based life prediction method for lithium-ion batteries with strong generalization capability under multiple cycle profiles," Applied Energy, Elsevier, vol. 327(C).
    3. Mishra, Madhav & Martinsson, Jesper & Rantatalo, Matti & Goebel, Kai, 2018. "Bayesian hierarchical model-based prognostics for lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 25-35.
    4. Tao, Tao & Zio, Enrico & Zhao, Wei, 2018. "A novel support vector regression method for online reliability prediction under multi-state varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 35-49.
    5. Gandoman, Foad H. & Ahmadi, Abdollah & Bossche, Peter Van den & Van Mierlo, Joeri & Omar, Noshin & Nezhad, Ali Esmaeel & Mavalizadeh, Hani & Mayet, Clément, 2019. "Status and future perspectives of reliability assessment for electric vehicles," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 1-16.
    6. Chenqiang Luo & Zhendong Zhang & Dongdong Qiao & Xin Lai & Yongying Li & Shunli Wang, 2022. "Life Prediction under Charging Process of Lithium-Ion Batteries Based on AutoML," Energies, MDPI, vol. 15(13), pages 1-15, June.
    7. Hajiha, Mohammadmahdi & Liu, Xiao & Lee, Young M. & Ramin, Moghaddass, 2022. "A physics-regularized data-driven approach for health prognostics of complex engineered systems with dependent health states," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Kong, Jin-zhen & Yang, Fangfang & Zhang, Xi & Pan, Ershun & Peng, Zhike & Wang, Dong, 2021. "Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries," Energy, Elsevier, vol. 223(C).
    9. Lin, Chun Pang & Ling, Man Ho & Cabrera, Javier & Yang, Fangfang & Yu, Denis Yau Wai & Tsui, Kwok Leung, 2021. "Prognostics for lithium-ion batteries using a two-phase gamma degradation process model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    10. Zhang, Yong & Tu, Lei & Xue, Zhiwei & Li, Sai & Tian, Lulu & Zheng, Xiujuan, 2022. "Weight optimized unscented Kalman filter for degradation trend prediction of lithium-ion battery with error compensation strategy," Energy, Elsevier, vol. 251(C).
    11. Liu, Xinyang & Zheng, Zhuoyuan & Büyüktahtakın, İ. Esra & Zhou, Zhi & Wang, Pingfeng, 2021. "Battery asset management with cycle life prognosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Wei, Meng & Ye, Min & Zhang, Chuanwei & Li, Yan & Zhang, Jiale & Wang, Qiao, 2023. "A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling," Energy, Elsevier, vol. 283(C).
    13. Yu, Jianbo, 2018. "State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 82-95.
    14. Downey, Austin & Lui, Yu-Hui & Hu, Chao & Laflamme, Simon & Hu, Shan, 2019. "Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 1-12.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    2. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
    3. Yang, Yixin, 2021. "A machine-learning prediction method of lithium-ion battery life based on charge process for different applications," Applied Energy, Elsevier, vol. 292(C).
    4. García, Fausto P. & Pedregal, Diego J. & Roberts, Clive, 2010. "Time series methods applied to failure prediction and detection," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 698-703.
    5. Bai, Guangxing & Su, Yunsheng & Rahman, Maliha Maisha & Wang, Zequn, 2023. "Prognostics of Lithium-Ion batteries using knowledge-constrained machine learning and Kalman filtering," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Development of energy management system based on a rule-based power distribution strategy for hybrid power sources," Energy, Elsevier, vol. 175(C), pages 1055-1066.
    7. Haitao Min & Yukun Yan & Weiyi Sun & Yuanbin Yu & Rui Jiang & Fanyu Meng, 2023. "Construction and Estimation of Battery State of Health Using a De-LSTM Model Based on Real Driving Data," Energies, MDPI, vol. 16(24), pages 1-23, December.
    8. Fausto Pedro García Márquez & Diego J. Pedregal & Clive Roberts, 2015. "New methods for the condition monitoring of level crossings," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(5), pages 878-884, April.
    9. Han, Xiaojuan & Wang, Zuran & Wei, Zixuan, 2021. "A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion," Applied Energy, Elsevier, vol. 302(C).
    10. Guo, Kai & Ye, Zhisheng & Liu, Datong & Peng, Xiyuan, 2021. "UAV flight control sensing enhancement with a data-driven adaptive fusion model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    11. Zhang, Yong & Tu, Lei & Xue, Zhiwei & Li, Sai & Tian, Lulu & Zheng, Xiujuan, 2022. "Weight optimized unscented Kalman filter for degradation trend prediction of lithium-ion battery with error compensation strategy," Energy, Elsevier, vol. 251(C).
    12. Son, Seho & Jeong, Siheon & Kwak, Eunji & Kim, Jun-hyeong & Oh, Ki-Yong, 2022. "Integrated framework for SOH estimation of lithium-ion batteries using multiphysics features," Energy, Elsevier, vol. 238(PA).
    13. Ling Mao & Jie Xu & Jiajun Chen & Jinbin Zhao & Yuebao Wu & Fengjun Yao, 2020. "A LSTM-STW and GS-LM Fusion Method for Lithium-Ion Battery RUL Prediction Based on EEMD," Energies, MDPI, vol. 13(9), pages 1-13, May.
    14. Liu, Yingchao & Hu, Xiaofeng & Zhang, Wenjuan, 2019. "Remaining useful life prediction based on health index similarity," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 502-510.
    15. Li, Sai & Fang, Huajing & Shi, Bing, 2021. "Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    16. das Chagas Moura, Márcio & Azevedo, Rafael Valença & Droguett, Enrique López & Chaves, Leandro Rego & Lins, Isis Didier & Vilela, Romulo Fernando & Filho, Romero Sales, 2016. "Estimation of expected number of accidents and workforce unavailability through Bayesian population variability analysis and Markov-based model," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 136-146.
    17. Wu, Ji & Zhang, Chenbin & Chen, Zonghai, 2016. "An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks," Applied Energy, Elsevier, vol. 173(C), pages 134-140.
    18. Zhang, Qisong & Yang, Lin & Guo, Wenchao & Qiang, Jiaxi & Peng, Cheng & Li, Qinyi & Deng, Zhongwei, 2022. "A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system," Energy, Elsevier, vol. 241(C).
    19. Pang, Hui & Chen, Kaiqiang & Geng, Yuanfei & Wu, Longxing & Wang, Fengbin & Liu, Jiahao, 2024. "Accurate capacity and remaining useful life prediction of lithium-ion batteries based on improved particle swarm optimization and particle filter," Energy, Elsevier, vol. 293(C).
    20. Marhavilas, P.K. & Koulouriotis, D.E. & Spartalis, S.H., 2013. "Harmonic analysis of occupational-accident time-series as a part of the quantified risk evaluation in worksites: Application on electric power industry and construction sector," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 8-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:159:y:2017:i:c:p:47-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.