IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v177y2018icp35-49.html
   My bibliography  Save this article

A novel support vector regression method for online reliability prediction under multi-state varying operating conditions

Author

Listed:
  • Tao, Tao
  • Zio, Enrico
  • Zhao, Wei

Abstract

Modeling the evolution of system reliability in the presence of Condition Monitoring (CM) signals is an important issue for improved reliability assessment and system lifetime prediction. In practice, during its lifetime, a system usually works under varying operating conditions due to internal or external factors such as the ambient environments, operational profiles or workloads. In this context, the system reliability can show varying evolution behaviors (follow changing underlying trajectories), which presents new challenges to describe precisely the dynamics of system reliability. Thus, this paper proposes a novel data-driven approach to address the problems including the identification of varying operating conditions, the construction and dynamical updating of evolution model, and finally the online prediction of system reliability, focusing on systems under one common and typical case of varying operating conditions, the multi-state operating condition. Experiments based on artificial data and some widely studied real reliability cases reveal that the proposed method has superior performance compared with some existing benchmark approaches, in the case under consideration. This improved reliability prediction provides fundamental basis for advanced prognostics such as the Remaining Useful Life (RUL) estimation.

Suggested Citation

  • Tao, Tao & Zio, Enrico & Zhao, Wei, 2018. "A novel support vector regression method for online reliability prediction under multi-state varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 35-49.
  • Handle: RePEc:eee:reensy:v:177:y:2018:i:c:p:35-49
    DOI: 10.1016/j.ress.2018.04.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017304751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.04.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shin, Jinsoo & Son, Hanseong & Khalil ur, Rahman & Heo, Gyunyoung, 2015. "Development of a cyber security risk model using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 208-217.
    2. Son, Junbo & Zhou, Shiyu & Sankavaram, Chaitanya & Du, Xinyu & Zhang, Yilu, 2016. "Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 38-50.
    3. Xu, Xin & Chen, Nan, 2017. "A state-space-based prognostics model for lithium-ion battery degradation," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 47-57.
    4. Si, Xiao-Sheng & Wang, Wenbin & Chen, Mao-Yin & Hu, Chang-Hua & Zhou, Dong-Hua, 2013. "A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution," European Journal of Operational Research, Elsevier, vol. 226(1), pages 53-66.
    5. Linkan Bian & Nagi Gebraeel & Jeffrey P. Kharoufeh, 2015. "Degradation modeling for real-time estimation of residual lifetimes in dynamic environments," IISE Transactions, Taylor & Francis Journals, vol. 47(5), pages 471-486, May.
    6. Podofillini, L. & Zio, E. & Mercurio, D. & Dang, V.N., 2010. "Dynamic safety assessment: Scenario identification via a possibilistic clustering approach," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 534-549.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Yaqun & Jin, Ping & Cai, Guobiao & Li, Ruizhi, 2022. "A Bi-stage Multi-objective Reliability-based Design Optimization Using Surrogate Model for Reusable Thrust Chambers," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Gao, Shuzhi & Zhang, Sixuan & Zhang, Yimin & Gao, Yue, 2020. "Operational reliability evaluation and prediction of rolling bearing based on isometric mapping and NoCuSa-LSSVM," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    3. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    4. Long, Junqi & Chen, Chuanhai & Liu, Zhifeng & Guo, Jinyan & Chen, Weizheng, 2022. "Stochastic hybrid system approach to task-orientated remaining useful life prediction under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Baraldi, Piero & Castellano, Andrea & Shokry, Ahmed & Gentile, Ugo & Serio, Luigi & Zio, Enrico, 2020. "A Feature Selection-based Approach for the Identification of Critical Components in Complex Technical Infrastructures: Application to the CERN Large Hadron Collider," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    6. Xiongxiong You & Mengya Zhang & Diyin Tang & Zhanwen Niu, 2022. "An active learning method combining adaptive kriging and weighted penalty for structural reliability analysis," Journal of Risk and Reliability, , vol. 236(1), pages 160-172, February.
    7. Yang, Ningning & Wang, Zhijian & Cai, Wenan & Li, Yanfeng, 2023. "Data Regeneration Based on Multiple Degradation Processes for Remaining Useful Life Estimation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Yaqun, Qi & Ping, Jin & Ruizhi, Li & Sheng, Zhang & Guobiao, Cai, 2020. "Dynamic reliability analysis for the reusable thrust chamber: A multi-failure modes investigation based on coupled thermal-structural analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Li, Yan-Fu & Zhao, Wei & Zhang, Chen & Ye, Jiantao & He, Huiru, 2024. "A study on the prediction of service reliability of wireless telecommunication system via distribution regression," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    11. Yuan, Kai & Xiao, Ning-Cong & Wang, Zhonglai & Shang, Kun, 2020. "System reliability analysis by combining structure function and active learning kriging model," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    13. Zhang, Yu & Dong, You & Xu, Jun, 2023. "An accelerated active learning Kriging model with the distance-based subdomain and a new stopping criterion for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Dong, Zhe & Li, Bowen & Li, Junyi & Huang, Xiaojin & Zhang, Zuoyi, 2022. "Online reliability assessment of energy systems based on a high-order extended-state-observer with application to nuclear reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. BahooToroody, Ahmad & De Carlo, Filippo & Paltrinieri, Nicola & Tucci, Mario & Van Gelder, P.H.A.J.M., 2020. "Bayesian regression based condition monitoring approach for effective reliability prediction of random processes in autonomous energy supply operation," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    16. Runxia Guo & Zhile Wei & Ye Wei, 2020. "State estimation for the electro-hydraulic actuator based on particle filter with an improved resampling technique," Journal of Risk and Reliability, , vol. 234(1), pages 41-51, February.
    17. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    18. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Bian, Linkan & Si, Xiaosheng, 2019. "Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 88-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mo, Huadong & Sansavini, Giovanni, 2019. "Impact of aging and performance degradation on the operational costs of distributed generation systems," Renewable Energy, Elsevier, vol. 143(C), pages 426-439.
    2. Liu, Jie & Zio, Enrico, 2017. "System dynamic reliability assessment and failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 21-36.
    3. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    4. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Wen, Yuxin & Wu, Jianguo & Das, Devashish & Tseng, Tzu-Liang(Bill), 2018. "Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 113-124.
    6. Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    8. Monzer, Mohamad-Houssein & Beydoun, Kamal & Ghaith, Alaa & Flaus, Jean-Marie, 2022. "Model-based IDS design for ICSs," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    11. Tianyu Liu & Zhengqiang Pan & Quan Sun & Jing Feng & Yanzhen Tang, 2017. "Residual useful life estimation for products with two performance characteristics based on a bivariate Wiener process," Journal of Risk and Reliability, , vol. 231(1), pages 69-80, February.
    12. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Kim, Hee Eun & Son, Han Seong & Kim, Jonghyun & Kang, Hyun Gook, 2017. "Systematic development of scenarios caused by cyber-attack-induced human errors in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 290-301.
    14. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    15. Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.
    16. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    17. Zhao, Bo & Zhang, Weige & Zhang, Yanru & Zhang, Caiping & Zhang, Chi & Zhang, Junwei, 2024. "Research on the remaining useful life prediction method for lithium-ion batteries by fusion of feature engineering and deep learning," Applied Energy, Elsevier, vol. 358(C).
    18. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Mishra, Madhav & Martinsson, Jesper & Rantatalo, Matti & Goebel, Kai, 2018. "Bayesian hierarchical model-based prognostics for lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 25-35.
    20. Kong, Jin-zhen & Yang, Fangfang & Zhang, Xi & Pan, Ershun & Peng, Zhike & Wang, Dong, 2021. "Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:177:y:2018:i:c:p:35-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.