IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8088-d1301275.html
   My bibliography  Save this article

Construction and Estimation of Battery State of Health Using a De-LSTM Model Based on Real Driving Data

Author

Listed:
  • Haitao Min

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Yukun Yan

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Weiyi Sun

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Yuanbin Yu

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Rui Jiang

    (China FAW Corporation Limited, Changchun 130013, China)

  • Fanyu Meng

    (China FAW Corporation Limited, Changchun 130013, China)

Abstract

Electric vehicles (EVs) have considerable potential in promoting energy efficiency and carbon neutrality. State of health (SOH) estimations for battery systems can be effective for avoiding accidents involving EVs. However, existing methods have rarely been developed using real driving data. The complex working environments of EVs and their limited data acquisition capability increase the challenges for estimating SOH. In this study, a novel battery SOH definition for EVs was established by analyzing and extracting six potential SOH indicators from driving data. The definition proposed using the entropy weight method (EWM) described the degradation trend for different EV batteries. Combined with a denoising autoencoder, a novel long short-term memory neural network model was established for SOH prediction. It can learn robust features using noisy input data without being affected by different environments or driver behaviors. The network achieved a maximum mean absolute percentage error (MAPE) of 0.8827% and root mean square error (RMSE) of 0.9802%. The results have shown that the proposed method has a higher level of accuracy and is more robust than existing methods in the field.

Suggested Citation

  • Haitao Min & Yukun Yan & Weiyi Sun & Yuanbin Yu & Rui Jiang & Fanyu Meng, 2023. "Construction and Estimation of Battery State of Health Using a De-LSTM Model Based on Real Driving Data," Energies, MDPI, vol. 16(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8088-:d:1301275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8088/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8088/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    2. Xu, Zhicheng & Wang, Jun & Lund, Peter D. & Zhang, Yaoming, 2021. "Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data," Energy, Elsevier, vol. 225(C).
    3. Shen, Sheng & Sadoughi, Mohammadkazem & Li, Meng & Wang, Zhengdao & Hu, Chao, 2020. "Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 260(C).
    4. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
    2. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    3. Li, Jinwen & Deng, Zhongwei & Liu, Hongao & Xie, Yi & Liu, Chuan & Lu, Chen, 2022. "Battery capacity trajectory prediction by capturing the correlation between different vehicles," Energy, Elsevier, vol. 260(C).
    4. Bockrath, Steffen & Lorentz, Vincent & Pruckner, Marco, 2023. "State of health estimation of lithium-ion batteries with a temporal convolutional neural network using partial load profiles," Applied Energy, Elsevier, vol. 329(C).
    5. Ma, Yan & Shan, Ce & Gao, Jinwu & Chen, Hong, 2023. "Multiple health indicators fusion-based health prognostic for lithium-ion battery using transfer learning and hybrid deep learning method," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Che, Yunhong & Zheng, Yusheng & Wu, Yue & Sui, Xin & Bharadwaj, Pallavi & Stroe, Daniel-Ioan & Yang, Yalian & Hu, Xiaosong & Teodorescu, Remus, 2022. "Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network," Applied Energy, Elsevier, vol. 323(C).
    7. Lin, Mingqiang & You, Yuqiang & Wang, Wei & Wu, Ji, 2023. "Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    9. Cai, Yishan & Yang, Lin & Deng, Zhongwei & Zhao, Xiaowei & Deng, Hao, 2018. "Online identification of lithium-ion battery state-of-health based on fast wavelet transform and cross D-Markov machine," Energy, Elsevier, vol. 147(C), pages 621-635.
    10. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    11. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    12. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    13. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    14. E. Skordilis & R. Moghaddass, 2017. "A condition monitoring approach for real-time monitoring of degrading systems using Kalman filter and logistic regression," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5579-5596, October.
    15. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    16. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    17. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Xu, Xin & Chen, Nan, 2017. "A state-space-based prognostics model for lithium-ion battery degradation," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 47-57.
    19. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    20. Jia Tian & Xingqin Zhang & Shuangqing Zheng & Zhiyong Liu & Changshu Zhan, 2024. "Synergising an Advanced Optimisation Technique with Deep Learning: A Novel Method in Fault Warning Systems," Mathematics, MDPI, vol. 12(9), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8088-:d:1301275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.