IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v150y2016icp136-146.html
   My bibliography  Save this article

Estimation of expected number of accidents and workforce unavailability through Bayesian population variability analysis and Markov-based model

Author

Listed:
  • das Chagas Moura, Márcio
  • Azevedo, Rafael Valença
  • Droguett, Enrique López
  • Chaves, Leandro Rego
  • Lins, Isis Didier
  • Vilela, Romulo Fernando
  • Filho, Romero Sales

Abstract

Occupational accidents pose several negative consequences to employees, employers, environment and people surrounding the locale where the accident takes place. Some types of accidents correspond to low frequency-high consequence (long sick leaves) events, and then classical statistical approaches are ineffective in these cases because the available dataset is generally sparse and contain censored recordings. In this context, we propose a Bayesian population variability method for the estimation of the distributions of the rates of accident and recovery. Given these distributions, a Markov-based model will be used to estimate the uncertainty over the expected number of accidents and the work time loss. Thus, the use of Bayesian analysis along with the Markov approach aims at investigating future trends regarding occupational accidents in a workplace as well as enabling a better management of the labor force and prevention efforts. One application example is presented in order to validate the proposed approach; this case uses available data gathered from a hydropower company in Brazil.

Suggested Citation

  • das Chagas Moura, Márcio & Azevedo, Rafael Valença & Droguett, Enrique López & Chaves, Leandro Rego & Lins, Isis Didier & Vilela, Romulo Fernando & Filho, Romero Sales, 2016. "Estimation of expected number of accidents and workforce unavailability through Bayesian population variability analysis and Markov-based model," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 136-146.
  • Handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:136-146
    DOI: 10.1016/j.ress.2016.01.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016000260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.01.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ale, B.J.M. & Bellamy, L.J. & Baksteen, H. & Damen, M. & Goossens, L.H.J. & Hale, A.R. & Mud, M. & Oh, J. & Papazoglou, I.A. & Whiston, J.Y., 2008. "Accidents in the construction industry in the Netherlands: An analysis of accident reports using Storybuilder," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1523-1533.
    2. Rognstad, Kirsten, 1994. "Costs of occupational accidents and diseases in Norway," European Journal of Operational Research, Elsevier, vol. 75(3), pages 553-566, June.
    3. Carmen Carnero, María & José Pedregal, Diego, 2010. "Modelling and forecasting occupational accidents of different severity levels in Spain," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1134-1141.
    4. Stephen C. Hora & Ronald L. Iman, 1990. "Bayesian Modeling of Initiating Event Frequencies at Nuclear Power Plants," Risk Analysis, John Wiley & Sons, vol. 10(1), pages 103-109, March.
    5. Yakovlev, Pavel & Sobel, Russell S., 2010. "Occupational safety and profit maximization: Friends or foes?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 39(3), pages 429-435, June.
    6. Enrique López Droguett & Ali Mosleh, 2013. "Integrated treatment of model and parameter uncertainties through a Bayesian approach," Journal of Risk and Reliability, , vol. 227(1), pages 41-54, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Westreich, Sara & Perlman, Yael & Winkler, Michael, 2021. "Analysis and Implications of the Management of Near-Miss Events: A Game Theoretic Approach," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis A. Papazoglou & Olga Aneziris & Linda Bellamy & B. J. M. Ale & Joy I. H. Oh, 2015. "Uncertainty Assessment in the Quantification of Risk Rates of Occupational Accidents," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1536-1561, August.
    2. Xu, Xin & Chen, Nan, 2017. "A state-space-based prognostics model for lithium-ion battery degradation," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 47-57.
    3. Dzonzi-Undi, Junice & Li, Shixiang, 2016. "Safety and environmental inputs investment effect analysis: Empirical study of selected coal mining firms in China," Resources Policy, Elsevier, vol. 47(C), pages 178-186.
    4. Aneziris, O.N. & Topali, E. & Papazoglou, I.A., 2012. "Occupational risk of building construction," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 36-46.
    5. Amir S. GOHARDANI & Folke BJÖRK, 2013. "A Conceptual Disaster Risk Reduction Framework For Health And Safety Hazards In The Construction Industry," Management and Marketing Journal, University of Craiova, Faculty of Economics and Business Administration, vol. 0(1), pages 173-192, May.
    6. Eduard Hofer & Stephen C. Hora & Ronald L. Iman & Jörg Peschke, 1997. "On the Solution Approach for Bayesian Modeling of Initiating Event Frequencies and Failure Rates," Risk Analysis, John Wiley & Sons, vol. 17(2), pages 249-252, April.
    7. Carmen Carnero, María & José Pedregal, Diego, 2010. "Modelling and forecasting occupational accidents of different severity levels in Spain," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1134-1141.
    8. Sung-Yong Kang & Seongi Min & Won-Seok Kim & Jeong-Hun Won & Young-Jong Kang & Seungjun Kim, 2022. "Types and Characteristics of Fatal Accidents Caused by Multiple Processes in a Workplace: Based on Actual Cases in South Korea," IJERPH, MDPI, vol. 19(4), pages 1-20, February.
    9. Pascale Lengagne, 2016. "Experience Rating and Work-Related Health and Safety," Journal of Labor Research, Springer, vol. 37(1), pages 69-97, March.
    10. Jeong-Hun Won & Hyeon-Ji Jeong & WonSeok Kim & Seungjun Kim & Sung-Yong Kang & Jong Moon Hwang, 2022. "Mechanisms Analysis for Fatal Accident Types Caused by Multiple Processes in the Workplace: Based on Accident Case in South Korea," IJERPH, MDPI, vol. 19(18), pages 1-23, September.
    11. Bunea, C. & Charitos, T. & Cooke, R.M. & Becker, G., 2005. "Two-stage Bayesian models—application to ZEDB project," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 123-130.
    12. Pascale Lengagne, 2015. "Workers Compensation Insurance: Incentive Effects of Experience Rating on Work-related Health and Safety," Working Papers DT64, IRDES institut for research and information in health economics, revised Jan 2015.
    13. Marhavilas, P.K. & Koulouriotis, D.E. & Spartalis, S.H., 2013. "Harmonic analysis of occupational-accident time-series as a part of the quantified risk evaluation in worksites: Application on electric power industry and construction sector," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 8-25.
    14. Johannes G. Jaspersen & Gilberto Montibeller, 2015. "Probability Elicitation Under Severe Time Pressure: A Rank‐Based Method," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1317-1335, July.
    15. Silva, Joaquim F. & Jacinto, Celeste, 2012. "Finding occupational accident patterns in the extractive industry using a systematic data mining approach," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 108-122.
    16. Forell, Burkhard & Peschke, Jörg & Einarsson, Svante & Röwekamp, Marina, 2016. "Technical reliability of active fire protection features – generic database derived from German nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 277-286.
    17. Carnero, María del Carmen & Pedregal, Diego José, 2013. "Ex-ante assessment of the Spanish Occupational Health and Safety Strategy (2007–2012) using a State Space framework," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 14-21.
    18. Rita Yi Man Li & Kwong Wing Chau & Frankie Fanjie Zeng, 2019. "Ranking of Risks for Existing and New Building Works," Sustainability, MDPI, vol. 11(10), pages 1-26, May.
    19. Mara Lombardi & Mario Fargnoli & Giuseppe Parise, 2019. "Risk Profiling from the European Statistics on Accidents at Work (ESAW) Accidents′ Databases: A Case Study in Construction Sites," IJERPH, MDPI, vol. 16(23), pages 1-22, November.
    20. Song, Guozheng & Khan, Faisal & Wang, Hangzhou & Leighton, Shelly & Yuan, Zhi & Liu, Hanwen, 2016. "Dynamic occupational risk model for offshore operations in harsh environments," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 58-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:136-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.