IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v112y2013icp8-25.html
   My bibliography  Save this article

Harmonic analysis of occupational-accident time-series as a part of the quantified risk evaluation in worksites: Application on electric power industry and construction sector

Author

Listed:
  • Marhavilas, P.K.
  • Koulouriotis, D.E.
  • Spartalis, S.H.

Abstract

The development of an integrated risk analysis scheme, which will combine a well-considered selection of widespread techniques, would enable the companies to achieve efficient results on risk assessment. In this study, we develop a methodological framework (as a part of the quantified risk evaluation), by incorporating a new technique, that is implemented by the harmonic-analysis of time-series of occupational-accidents (called as HATS). Our objective is therefore, twofold: (i) the development of a new risk assessment framework (HATS technique) and the subsequent application of HATS on the worksites of electric power industry and construction sector, and (ii) the enrichment of the harmonic-analysis theoretical background, as far as the significance-level of spectral peaks is concerned, with fully-completed practical tables, that they have been produced by using the scientific literature. In fact, we apply HATS on occupational-accident time-series, which were (a) observed in the worksites of the Greek Public electric Power Corporation (PPC) and the Greek construction-companies (GCCs), and (b) recorded in great statistical-databases of PPC, and IKA (the Greek Social Insurance Institute/Ministry of Health), respectively. The results of HATS were tested statistically by using Shimshoni's significance-test. Moreover, the results of the comparative time/frequency-domain analysis of the accident time-series in PPC (for 1993–2009) and GCCs (for 1999–2007), prove that they are characterized by the existence of a periodic factor which (a) constitutes a permanent feature for the dynamic behavior of PPC's and GCCs' OHSS (occupational health and safety system), and (b) could be taken into account by risk managers in risk assessment, i.e., immediate suppressive measures must be taken place to abolish the danger source which is originated from the quasi-periodic appearance of the most important hazard sources.

Suggested Citation

  • Marhavilas, P.K. & Koulouriotis, D.E. & Spartalis, S.H., 2013. "Harmonic analysis of occupational-accident time-series as a part of the quantified risk evaluation in worksites: Application on electric power industry and construction sector," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 8-25.
  • Handle: RePEc:eee:reensy:v:112:y:2013:i:c:p:8-25
    DOI: 10.1016/j.ress.2012.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201200244X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aneziris, O.N. & Topali, E. & Papazoglou, I.A., 2012. "Occupational risk of building construction," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 36-46.
    2. Marhavilas, P.K. & Koulouriotis, D.E., 2012. "A combined usage of stochastic and quantitative risk assessment methods in the worksites: Application on an electric power provider," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 36-46.
    3. Carmen Carnero, María & José Pedregal, Diego, 2010. "Modelling and forecasting occupational accidents of different severity levels in Spain," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1134-1141.
    4. Lisnianski, Anatoly & Elmakias, David & Laredo, David & Ben Haim, Hanoch, 2012. "A multi-state Markov model for a short-term reliability analysis of a power generating unit," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 1-6.
    5. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2013. "Risk-based design of process systems using discrete-time Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 5-17.
    6. Stewart, Mark G. & O’Connor, Alan, 2012. "Probabilistic risk assessment and service life performance management of load bearing biomedical implants," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 49-55.
    7. Carnero, María del Carmen & Pedregal, Diego José, 2013. "Ex-ante assessment of the Spanish Occupational Health and Safety Strategy (2007–2012) using a State Space framework," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 14-21.
    8. Kravchenko V., 2009. "Enterprise risk management: subjective factors," Bulletin of Taras Shevchenko National University of Kyiv. Economics. Вісник Киiвського нацiонального унiверситету iм. Тараса Шевченка. Серiя: Економiка, CyberLeninka;Издательско-полиграфический центр «Киевский университет», issue 110, pages 24-27.
    9. Verlinden, Steven & Deconinck, Geert & Coupé, Bernard, 2012. "Hybrid reliability model for nuclear reactor safety system," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 35-47.
    10. Hanea, D.M. & Jagtman, H.M. & Ale, B.J.M., 2012. "Analysis of the Schiphol Cell Complex fire using a Bayesian belief net based model," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 115-124.
    11. Whiteside, M.B. & Pinho, S.T. & Robinson, P., 2012. "Stochastic failure modelling of unidirectional composite ply failure," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 1-9.
    12. Guikema, S.D. & Quiring, S.M., 2012. "Hybrid data mining-regression for infrastructure risk assessment based on zero-inflated data," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 178-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis K. Marhavilas & Michail Filippidis & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2020. "A HAZOP with MCDM Based Risk-Assessment Approach: Focusing on the Deviations with Economic/Health/Environmental Impacts in a Process Industry," Sustainability, MDPI, vol. 12(3), pages 1-29, January.
    2. Fotis Kitsios & Elpiniki Chatzidimitriou & Maria Kamariotou, 2023. "The ISO/IEC 27001 Information Security Management Standard: How to Extract Value from Data in the IT Sector," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    3. Panagiotis Marhavilas & Dimitrios Koulouriotis & Ioannis Nikolaou & Sotiria Tsotoulidou, 2018. "International Occupational Health and Safety Management-Systems Standards as a Frame for the Sustainability: Mapping the Territory," Sustainability, MDPI, vol. 10(10), pages 1-26, October.
    4. G.K. Koulinas & O.E. Demesouka & P.K. Marhavilas & A.P. Vavatsikos & D.E. Koulouriotis, 2019. "Risk Assessment Using Fuzzy TOPSIS and PRAT for Sustainable Engineering Projects," Sustainability, MDPI, vol. 11(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis K. Marhavilas & Michael G. Tegas & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2020. "A Joint Stochastic/Deterministic Process with Multi-Objective Decision Making Risk-Assessment Framework for Sustainable Constructions Engineering Projects—A Case Study," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    2. Ioannis A. Papazoglou & Olga Aneziris & Linda Bellamy & B. J. M. Ale & Joy I. H. Oh, 2015. "Uncertainty Assessment in the Quantification of Risk Rates of Occupational Accidents," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1536-1561, August.
    3. Song, Guozheng & Khan, Faisal & Wang, Hangzhou & Leighton, Shelly & Yuan, Zhi & Liu, Hanwen, 2016. "Dynamic occupational risk model for offshore operations in harsh environments," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 58-64.
    4. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    7. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    8. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    9. FANG Yongfeng & TAO Wenliang & TEE Kong Fah, 2016. "Reliability Analysis of Multi-State Engine Units Utilizing Time-Domain Response Data," Journal of Systems Science and Information, De Gruyter, vol. 4(4), pages 354-364, August.
    10. Landucci, Gabriele & Argenti, Francesca & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 30-43.
    11. Shengyu Guo & Jiali He & Jichao Li & Bing Tang, 2019. "Exploring the Impact of Unsafe Behaviors on Building Construction Accidents Using a Bayesian Network," IJERPH, MDPI, vol. 17(1), pages 1-15, December.
    12. Guo, Shengyu & Zhou, Xinyu & Tang, Bing & Gong, Peisong, 2020. "Exploring the behavioral risk chains of accidents using complex network theory in the construction industry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    13. Bistouni, Fathollah & Jahanshahi, Mohsen, 2014. "Analyzing the reliability of shuffle-exchange networks using reliability block diagrams," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 97-106.
    14. Babykina, Génia & Brînzei, Nicolae & Aubry, Jean-François & Deleuze, Gilles, 2016. "Modeling and simulation of a controlled steam generator in the context of dynamic reliability using a Stochastic Hybrid Automaton," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 115-136.
    15. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    16. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Eldosouky, AbdelRahman & Saad, Walid & Mandayam, Narayan, 2021. "Resilient critical infrastructure: Bayesian network analysis and contract-Based optimization," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    18. Chen, Qian & Zuo, Lili & Wu, Changchun & Li, Yun & Hua, Kaixun & Mehrtash, Mahdi & Cao, Yankai, 2022. "Optimization of compressor standby schemes for gas transmission pipeline systems based on gas delivery reliability," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    19. D. Brent McRoberts & Steven M. Quiring & Seth D. Guikema, 2018. "Improving Hurricane Power Outage Prediction Models Through the Inclusion of Local Environmental Factors," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2722-2737, December.
    20. Zhao, Yunfei & Gao, Wei & Smidts, Carol, 2021. "Sequential Bayesian inference of transition rates in the hidden Markov model for multi-state system degradation," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:112:y:2013:i:c:p:8-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.