IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v140y2015icp88-98.html
   My bibliography  Save this article

A random-effects model for long-term degradation analysis of solid oxide fuel cells

Author

Listed:
  • Guida, Maurizio
  • Postiglione, Fabio
  • Pulcini, Gianpaolo

Abstract

Solid oxide fuel cells (SOFCs) are electrochemical devices converting the chemical energy into electricity with high efficiency and low pollutant emissions. Tough very promising, this technology is still in a developing phase, and degradation at the cell/stack level with operating time is still an issue of major concern. Methods to directly observe degradation modes and to measure their evolution over time are difficult to implement, and indirect performance indicators are adopted, typically related to voltage measurements in long-term tests. In order to describe long-term degradation tests, three components of the voltage measurements should be modelled: the smooth decay of voltage over time for each single unit; the variability of voltage decay among units; and the high-frequency small fluctuations of voltage due to experimental noise and lack of fit. In this paper, we propose an empirical random-effects regression model of polynomial type enabling to evaluate separately these three types of variability. Point and interval estimates are also derived for some performance measures, such as the mean voltage, the prediction of cell voltage, the reliability function and the cell-to-cell variability in SOFC stacks. Finally, the proposed methodology is applied to two real case-studies of long-term degradation tests of SOFC stacks.

Suggested Citation

  • Guida, Maurizio & Postiglione, Fabio & Pulcini, Gianpaolo, 2015. "A random-effects model for long-term degradation analysis of solid oxide fuel cells," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 88-98.
  • Handle: RePEc:eee:reensy:v:140:y:2015:i:c:p:88-98
    DOI: 10.1016/j.ress.2015.03.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015001027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.03.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guida, M. & Postiglione, F. & Pulcini, G., 2012. "A time-discrete extended gamma process for time-dependent degradation phenomena," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 73-79.
    2. Kim, Seong-Joon & Bae, Suk Joo, 2013. "Cost-effective degradation test plan for a nonlinear random-coefficients model," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 68-79.
    3. Yuan, X.-X. & Pandey, M.D., 2009. "A nonlinear mixed-effects model for degradation data obtained from in-service inspections," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 509-519.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gallo, Marco & Costabile, Carmine & Sorrentino, Marco & Polverino, Pierpaolo & Pianese, Cesare, 2020. "Development and application of a comprehensive model-based methodology for fault mitigation of fuel cell powered systems," Applied Energy, Elsevier, vol. 279(C).
    2. Santos, Cristiano C. & Loschi, Rosangela H., 2020. "Semi-parametric Bayesian models for heterogeneous degradation data: An application to laser data," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Gallo, Marco & Polverino, Pierpaolo & Mougin, Julie & Morel, Bertrand & Pianese, Cesare, 2020. "Coupling electrochemical impedance spectroscopy and model-based aging estimation for solid oxide fuel cell stacks lifetime prediction," Applied Energy, Elsevier, vol. 279(C).
    4. Yuan, Tao & Wu, Xinying & Bae, Suk Joo & Zhu, Xiaoyan, 2019. "Reliability assessment of a continuous-state fuel cell stack system with multiple degrading components," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 157-164.
    5. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
    6. Xu, Ancha & Shen, Lijuan, 2018. "Improved on-line estimation for gamma process," Statistics & Probability Letters, Elsevier, vol. 143(C), pages 67-73.
    7. Luka Žnidarič & Žiga Gradišar & Đani Juričić, 2024. "Predicting the Remaining Useful Life of Solid Oxide Fuel Cell Systems Using Adaptive Trend Models of Health Indicators," Energies, MDPI, vol. 17(11), pages 1-20, June.
    8. Wu, Fan & Niknam, Seyed A. & Kobza, John E., 2015. "A cost effective degradation-based maintenance strategy under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 234-243.
    9. Roberto Spotorno & Fiammetta Rita Bianchi & Daniele Paravidino & Barbara Bosio & Paolo Piccardo, 2022. "Test and Modelling of Solid Oxide Fuel Cell Durability: A Focus on Interconnect Role on Global Degradation," Energies, MDPI, vol. 15(8), pages 1-19, April.
    10. Stoynov, Zdravko & Vladikova, Daria & Burdin, Blagoy & Laurencin, Jerome & Montinaro, Dario & Raikova, Gergana & Schiller, Günter & Szabo, Patric, 2018. "Differential analysis of SOFC current-voltage characteristics," Applied Energy, Elsevier, vol. 228(C), pages 1584-1590.
    11. Veloso, Guilherme A. & Loschi, Rosangela H., 2021. "Dynamic linear degradation model: Dealing with heterogeneity in degradation paths," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayman Hijazy & András Zempléni, 2021. "Gamma Process-Based Models for Disease Progression," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 241-255, March.
    2. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Bui, Ha & Sakurahara, Tatsuya & Pence, Justin & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 405-428.
    4. Fallahdizcheh, Amirhossein & Wang, Chao, 2022. "Transfer learning of degradation modeling and prognosis based on multivariate functional analysis with heterogeneous sampling rates," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Sophie Mercier & Carmen Sangüesa, 2023. "A general multivariate lifetime model with a multivariate additive process as conditional hazard rate increment process," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 91-129, January.
    6. Zeina Al Masry & Sophie Mercier & Ghislain Verdier, 2017. "Approximate Simulation Techniques and Distribution of an Extended Gamma Process," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 213-235, March.
    7. Kim, Seong-Joon & Mun, Byeong Min & Bae, Suk Joo, 2019. "A cost-driven reliability demonstration plan based on accelerated degradation tests," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 226-239.
    8. Wang, Lizhi & Pan, Rong & Li, Xiaoyang & Jiang, Tongmin, 2013. "A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 38-47.
    9. Yang, Yiming & Peng, Jianxin & Cai, C.S. & Zhou, Yadong & Wang, Lei & Zhang, Jianren, 2022. "Time-dependent reliability assessment of aging structures considering stochastic resistance degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Ahmed, Hussam & Chateauneuf, Alaa, 2014. "Optimal number of tests to achieve and validate product reliability," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 242-250.
    11. Yi Yang & John Dalsgaard Sørensen, 2019. "Cost-Optimal Maintenance Planning for Defects on Wind Turbine Blades," Energies, MDPI, vol. 12(6), pages 1-16, March.
    12. Guida, M. & Pulcini, G., 2013. "The inverse Gamma process: A family of continuous stochastic models for describing state-dependent deterioration phenomena," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 72-79.
    13. Gao, Hongda & Cui, Lirong & Qiu, Qingan, 2019. "Reliability modeling for degradation-shock dependence systems with multiple species of shocks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 133-143.
    14. Sakurahara, Tatsuya & O'Shea, Nicholas & Cheng, Wen-Chi & Zhang, Sai & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Integrating renewal process modeling with Probabilistic Physics-of-Failure: Application to Loss of Coolant Accident (LOCA) frequency estimations in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    15. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    16. Wang, Pingping & Tang, Yincai & Joo Bae, Suk & He, Yong, 2018. "Bayesian analysis of two-phase degradation data based on change-point Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 244-256.
    17. Jiang, R., 2010. "Optimization of alarm threshold and sequential inspection scheme," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 208-215.
    18. Andrade, Antonio Ramos & Stow, Julian, 2017. "Assessing the potential cost savings of introducing the maintenance option of ‘Economic Tyre Turning’ in Great Britain railway wheelsets," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 317-325.
    19. Baussaron, Julien & Mihaela, Barreau & Léo, Gerville-Réache & Fabrice, Guérin & Paul, Schimmerling, 2014. "Reliability assessment based on degradation measurements: How to compare some models?," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 236-241.
    20. Wang, Xiaofei & Wang, Bing Xing & Hong, Yili & Jiang, Pei Hua, 2021. "Degradation data analysis based on gamma process with random effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1200-1208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:140:y:2015:i:c:p:88-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.