IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v110y2013icp68-79.html
   My bibliography  Save this article

Cost-effective degradation test plan for a nonlinear random-coefficients model

Author

Listed:
  • Kim, Seong-Joon
  • Bae, Suk Joo

Abstract

The determination of requisite sample size and the inspection schedule considering both testing cost and accuracy has been an important issue in the degradation test. This paper proposes a cost-effective degradation test plan in the context of a nonlinear random-coefficients model, while meeting some precision constraints for failure-time distribution. We introduce a precision measure to quantify the information losses incurred by reducing testing resources. The precision measure is incorporated into time-varying cost functions to reflect real circumstances. We apply a hybrid genetic algorithm to general cost optimization problem with reasonable constraints on the level of testing precision in order to determine a cost-effective inspection scheme. The proposed method is applied to the degradation data of plasma display panels (PDPs) following a bi-exponential degradation model. Finally, sensitivity analysis via simulation is provided to evaluate the robustness of the proposed degradation test plan.

Suggested Citation

  • Kim, Seong-Joon & Bae, Suk Joo, 2013. "Cost-effective degradation test plan for a nonlinear random-coefficients model," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 68-79.
  • Handle: RePEc:eee:reensy:v:110:y:2013:i:c:p:68-79
    DOI: 10.1016/j.ress.2012.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012001901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuhn, E. & Lavielle, M., 2005. "Maximum likelihood estimation in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1020-1038, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guida, Maurizio & Postiglione, Fabio & Pulcini, Gianpaolo, 2015. "A random-effects model for long-term degradation analysis of solid oxide fuel cells," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 88-98.
    2. Baussaron, Julien & Mihaela, Barreau & Léo, Gerville-Réache & Fabrice, Guérin & Paul, Schimmerling, 2014. "Reliability assessment based on degradation measurements: How to compare some models?," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 236-241.
    3. Ahmed, Hussam & Chateauneuf, Alaa, 2014. "Optimal number of tests to achieve and validate product reliability," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 242-250.
    4. Kim, Seong-Joon & Mun, Byeong Min & Bae, Suk Joo, 2019. "A cost-driven reliability demonstration plan based on accelerated degradation tests," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 226-239.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibirénoyé Romaric Sodjahin & Fabienne Femenia & Obafemi Philippe Koutchade & A. Carpentier, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data [Valeur économique des effets agronomiques de la diversification de," Working Papers hal-03639951, HAL.
    2. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
    3. Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
    4. Laura Azzimonti & Francesca Ieva & Anna Maria Paganoni, 2013. "Nonlinear nonparametric mixed-effects models for unsupervised classification," Computational Statistics, Springer, vol. 28(4), pages 1549-1570, August.
    5. Samson, Adeline & Lavielle, Marc & Mentre, France, 2006. "Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1562-1574, December.
    6. Sébastien Benzekry & Clare Lamont & Afshin Beheshti & Amanda Tracz & John M L Ebos & Lynn Hlatky & Philip Hahnfeldt, 2014. "Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
    7. Trevezas, S. & Malefaki, S. & Cournède, P.-H., 2014. "Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 82-99.
    8. Ollier, Edouard & Samson, Adeline & Delavenne, Xavier & Viallon, Vivian, 2016. "A SAEM algorithm for fused lasso penalized NonLinear Mixed Effect Models: Application to group comparison in pharmacokinetics," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 207-221.
    9. Boubacar Mainassara, Y. & Carbon, M. & Francq, C., 2012. "Computing and estimating information matrices of weak ARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 345-361.
    10. Fu, Eric & Heckman, Nancy, 2019. "Model-based curve registration via stochastic approximation EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 159-175.
    11. Munch, Jakob R. & Nguyen, Daniel X., 2014. "Decomposing firm-level sales variation," Journal of Economic Behavior & Organization, Elsevier, vol. 106(C), pages 317-334.
    12. Larissa A. Matos & Víctor H. Lachos & Tsung-I Lin & Luis M. Castro, 2019. "Heavy-tailed longitudinal regression models for censored data: a robust parametric approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 844-878, September.
    13. Kim, Seong-Joon & Mun, Byeong Min & Bae, Suk Joo, 2019. "A cost-driven reliability demonstration plan based on accelerated degradation tests," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 226-239.
    14. Allassonnière, Stéphanie & Chevallier, Juliette, 2021. "A new class of stochastic EM algorithms. Escaping local maxima and handling intractable sampling," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    15. Baey, Charlotte & Cournède, Paul-Henry & Kuhn, Estelle, 2019. "Asymptotic distribution of likelihood ratio test statistics for variance components in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 107-122.
    16. Daniel B. Reeves & Christian Gaebler & Thiago Y. Oliveira & Michael J. Peluso & Joshua T. Schiffer & Lillian B. Cohn & Steven G. Deeks & Michel C. Nussenzweig, 2023. "Impact of misclassified defective proviruses on HIV reservoir measurements," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Elson Tomás & Susana Vinga & Alexandra M. Carvalho, 2017. "Unsupervised learning of pharmacokinetic responses," Computational Statistics, Springer, vol. 32(2), pages 409-428, June.
    18. María José Lombardía & Stefan Sperlich, 2008. "Semiparametric inference in generalized mixed effects models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 913-930, November.
    19. repec:dau:papers:123456789/11429 is not listed on IDEAS
    20. Hanwen Huang, 2022. "Bayesian multi‐level mixed‐effects model for influenza dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1978-1995, November.
    21. Christian E. Galarza & Luis M. Castro & Francisco Louzada & Victor H. Lachos, 2020. "Quantile regression for nonlinear mixed effects models: a likelihood based perspective," Statistical Papers, Springer, vol. 61(3), pages 1281-1307, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:110:y:2013:i:c:p:68-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.