IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v168y2017icp317-325.html
   My bibliography  Save this article

Assessing the potential cost savings of introducing the maintenance option of ‘Economic Tyre Turning’ in Great Britain railway wheelsets

Author

Listed:
  • Andrade, Antonio Ramos
  • Stow, Julian

Abstract

This paper assesses the potential cost savings of introducing a maintenance option known as ‘Economic Tyre Turning’ (ETT) in railway wheelset maintenance in Great Britain. It first develops a life-cycle cost model and puts forward a Monte Carlo simulation procedure to assess the life-cycle costs of different maintenance strategies, including ETT. This Monte Carlo simulation procedure samples from statistical degradation models that estimate the evolution of wear and damage trajectories of different wheelsets, and the maintenance impact of wheel turning in the loss of diameter in a more realistic manner by controlling random effects related to unit, vehicle and month of measurement. The main findings suggest that ETT may provide potential savings of around 0.8% up to 4.4% when compared to a simple wheelset renewal strategy, and between 2.0% and 4.7% cost savings when ETT is used in association with more complex strategies.

Suggested Citation

  • Andrade, Antonio Ramos & Stow, Julian, 2017. "Assessing the potential cost savings of introducing the maintenance option of ‘Economic Tyre Turning’ in Great Britain railway wheelsets," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 317-325.
  • Handle: RePEc:eee:reensy:v:168:y:2017:i:c:p:317-325
    DOI: 10.1016/j.ress.2017.05.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016306226
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.05.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Haibin & Davidson, Rachel A. & Apanasovich, Tatiyana V., 2008. "Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 897-912.
    2. Wu, Shaomin & Clements-Croome, Derek, 2005. "Preventive maintenance models with random maintenance quality," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 99-105.
    3. Yuan, X.-X. & Pandey, M.D., 2009. "A nonlinear mixed-effects model for degradation data obtained from in-service inspections," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 509-519.
    4. Guilani, Pedram Pourkarim & Azimi, Parham & Niaki, S.T.A. & Niaki, Seyed Armin Akhavan, 2016. "Redundancy allocation problem of a system with increasing failure rates of components based on Weibull distribution: A simulation-based optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 187-196.
    5. Reményi, Christoph & Staudacher, Stephan, 2014. "Systematic simulation based approach for the identification and implementation of a scheduling rule in the aircraft engine maintenance," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 94-107.
    6. ten Wolde, Mike & Ghobbar, Adel A., 2013. "Optimizing inspection intervals—Reliability and availability in terms of a cost model: A case study on railway carriers," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 137-147.
    7. Julio C. Ferreira & Marta A. Freitas & Enrico A. Colosimo, 2012. "Degradation data analysis for samples under unequal operating conditions: a case study on train wheels," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(12), pages 2721-2739, August.
    8. Cho, Danny I. & Parlar, Mahmut, 1991. "A survey of maintenance models for multi-unit systems," European Journal of Operational Research, Elsevier, vol. 51(1), pages 1-23, March.
    9. Alrabghi, Abdullah & Tiwari, Ashutosh, 2016. "A novel approach for modelling complex maintenance systems using discrete event simulation," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 160-170.
    10. Do, Phuc & Vu, Hai Canh & Barros, Anne & Bérenguer, Christophe, 2015. "Maintenance grouping for multi-component systems with availability constraints and limited maintenance teams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 56-67.
    11. Gao, Chunwang & Meeker, William Q. & Mayton, Donna, 2014. "Detecting cracks in aircraft engine fan blades using vibrothermography nondestructive evaluation," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 229-235.
    12. Wang, Ling & Xu, Hong & Yuan, Hua & Zhao, Wenjie & Chen, Xiai, 2015. "Optimizing the re-profiling strategy of metro wheels based on a data-driven wear model," European Journal of Operational Research, Elsevier, vol. 242(3), pages 975-986.
    13. Vu, Hai Canh & Do, Phuc & Barros, Anne & Bérenguer, Christophe, 2014. "Maintenance grouping strategy for multi-component systems with dynamic contexts," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 233-249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joaquim AP Braga & António R Andrade, 2019. "Optimizing maintenance decisions in railway wheelsets: A Markov decision process approach," Journal of Risk and Reliability, , vol. 233(2), pages 285-300, April.
    2. Zhou, Jian-Lan & Lei, Yi & Chen, Yang, 2019. "A hybrid HEART method to estimate human error probabilities in locomotive driving process," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 80-89.
    3. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    2. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    3. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    4. Dilaver, Halit Metehan & Akçay, Alp & van Houtum, Geert-Jan, 2023. "Integrated planning of asset-use and dry-docking for a fleet of maritime assets," International Journal of Production Economics, Elsevier, vol. 256(C).
    5. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    6. Do, Phuc & Vu, Hai Canh & Barros, Anne & Bérenguer, Christophe, 2015. "Maintenance grouping for multi-component systems with availability constraints and limited maintenance teams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 56-67.
    7. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Yaqiong Lv & Pan Zheng & Jiabei Yuan & Xiaohua Cao, 2023. "A Predictive Maintenance Strategy for Multi-Component Systems Based on Components’ Remaining Useful Life Prediction," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
    9. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    10. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.
    11. Liang, Zhenglin & Parlikad, Ajith Kumar, 2020. "Predictive group maintenance for multi-system multi-component networks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Wu, Tianyi & Yang, Li & Ma, Xiaobing & Zhang, Zihan & Zhao, Yu, 2020. "Dynamic maintenance strategy with iteratively updated group information," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    13. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2015. "Multi-level predictive maintenance for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 83-94.
    14. Barlow, E. & Bedford, T. & Revie, M. & Tan, J. & Walls, L., 2021. "A performance-centred approach to optimising maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 292(2), pages 579-595.
    15. Olde Keizer, Minou C.A. & Teunter, Ruud H. & Veldman, Jasper, 2016. "Clustering condition-based maintenance for systems with redundancy and economic dependencies," European Journal of Operational Research, Elsevier, vol. 251(2), pages 531-540.
    16. Petchrompo, Sanyapong & Li, Hao & Erguido, Asier & Riches, Chris & Parlikad, Ajith Kumar, 2020. "A value-based approach to optimizing long-term maintenance plans for a multi-asset k-out-of-N system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    17. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    18. Dinh, Duc-Hanh & Do, Phuc & Iung, Benoit, 2022. "Multi-level opportunistic predictive maintenance for multi-component systems with economic dependence and assembly/disassembly impacts," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Jingyi Zhao & Chunhai Gao & Tao Tang, 2022. "A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    20. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:168:y:2017:i:c:p:317-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.