IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v19y2017i1d10.1007_s11009-015-9474-3.html
   My bibliography  Save this article

Approximate Simulation Techniques and Distribution of an Extended Gamma Process

Author

Listed:
  • Zeina Al Masry

    (Université de Pau et des Pays de l’Adour)

  • Sophie Mercier

    (Université de Pau et des Pays de l’Adour)

  • Ghislain Verdier

    (Université de Pau et des Pays de l’Adour)

Abstract

In reliability theory, many papers use a standard Gamma process to model the evolution of the cumulative deterioration of a system over time. When the variance-to-mean ratio of the system deterioration level varies over time, the standard Gamma process is not convenient any more because it provides a constant ratio. A way to overcome this restriction is to consider the extended version of a Gamma process proposed by Cinlar (J Appl Probab 17:467–480, 1980). However, based on its technicality, the use of such a process for applicative purpose requires the preliminary development of technical tools for simulating its paths and for the numerical assessment of its distribution. This paper is devoted to these two points.

Suggested Citation

  • Zeina Al Masry & Sophie Mercier & Ghislain Verdier, 2017. "Approximate Simulation Techniques and Distribution of an Extended Gamma Process," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 213-235, March.
  • Handle: RePEc:spr:metcap:v:19:y:2017:i:1:d:10.1007_s11009-015-9474-3
    DOI: 10.1007/s11009-015-9474-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-015-9474-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-015-9474-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guida, M. & Postiglione, F. & Pulcini, G., 2012. "A time-discrete extended gamma process for time-dependent degradation phenomena," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 73-79.
    2. Ishwaran, Hemant & James, Lancelot F., 2004. "Computational Methods for Multiplicative Intensity Models Using Weighted Gamma Processes: Proportional Hazards, Marked Point Processes, and Panel Count Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 175-190, January.
    3. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al Masry, Zeina & Rabehasaina, Landy & Verdier, Ghislain, 2022. "Change-level detection for Lévy subordinators," Stochastic Processes and their Applications, Elsevier, vol. 147(C), pages 423-455.
    2. Sophie Mercier & Carmen Sangüesa, 2023. "A general multivariate lifetime model with a multivariate additive process as conditional hazard rate increment process," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 91-129, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    2. Yang, Yiming & Peng, Jianxin & Cai, C.S. & Zhou, Yadong & Wang, Lei & Zhang, Jianren, 2022. "Time-dependent reliability assessment of aging structures considering stochastic resistance degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    4. Pedersen, Tom Ivar & Liu, Xingheng & Vatn, Jørn, 2023. "Maintenance optimization of a system subject to two-stage degradation, hard failure, and imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Guida, M. & Pulcini, G., 2013. "The inverse Gamma process: A family of continuous stochastic models for describing state-dependent deterioration phenomena," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 72-79.
    6. Thomas Michael Welte & Iver Bakken Sperstad & Espen Høegh Sørum & Magne Lorentzen Kolstad, 2017. "Integration of Degradation Processes in a Strategic Offshore Wind Farm O&M Simulation Model," Energies, MDPI, vol. 10(7), pages 1-18, July.
    7. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    8. Antonio Lijoi & Igor Pruenster & Stephen G. Walker, 2008. "Posterior analysis for some classes of nonparametric models," ICER Working Papers - Applied Mathematics Series 05-2008, ICER - International Centre for Economic Research.
    9. Phuc Do & Christophe Bérenguer, 2022. "Residual life-based importance measures for predictive maintenance decision-making," Journal of Risk and Reliability, , vol. 236(1), pages 98-113, February.
    10. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    11. Nicolai, R.P. & Frenk, J.B.G. & Dekker, R., 2007. "Modelling and Optimizing Imperfect Maintenance of Coatings on Steel Structures," ERIM Report Series Research in Management ERS-2007-043-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    13. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    15. Safaei, Fatemeh & Taghipour, Sharareh, 2024. "Integrated degradation-based burn-in and maintenance model for heterogeneous and highly reliable items," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    16. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    17. Maxim Finkelstein & Ji Hwan Cha, 2022. "Reducing degradation and age of items in imperfect repair modeling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1058-1081, December.
    18. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    19. Xudan Chen & Guoxun Ji & Xinli Sun & Zhen Li, 2019. "Inverse Gaussian–based model with measurement errors for degradation analysis," Journal of Risk and Reliability, , vol. 233(6), pages 1086-1098, December.
    20. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:19:y:2017:i:1:d:10.1007_s11009-015-9474-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.