IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v129y2014icp1-9.html
   My bibliography  Save this article

Early detection of gradual concept drifts by text categorization and Support Vector Machine techniques: The TRIO algorithm

Author

Listed:
  • Marseguerra, M.

Abstract

During the normal operation of complex and risky industrial plants such as the nuclear or the aerospace ones, the safety heavily rests upon the capability of the diagnostic systems of detecting concept drifts which might imply incipient failures. In this paper we propound the TRIO algorithm for the online detection of signal drifts: the underlying idea is that a real signal may be categorized as correct or drifting by comparison with added sets of artificial signals known to be correct or drifted. More specifically, the TRIO algorithm is based on three performers, namely (i) a training set of artificial signals, (ii) the Text Categorization (TC) technique and (iii) the Support Vector Machine (SVM) technique. Initially, we construct an artificial training set constituted by one “correct†set of signals, embraced by two “suspect†sets of signals, the suspect-up and the suspect-down drifting signals. These signals are transformed in points within the signal space by the TC technique; then the SVM technique is applied for isolating the regions occupied by the suspect-up and by the suspect-down points. At this point the “artificial context†has been established and the real measurements come in. By resorting to the sliding window technique, at each epoch the actually measured data segment is analogously transformed into a point within the signal space and then declared correct or suspect (drifted) according to the region where it falls. In the latter case suitable actions must be taken by the plant operators. Numerical case-studies and a comparison with literature results are presented.

Suggested Citation

  • Marseguerra, M., 2014. "Early detection of gradual concept drifts by text categorization and Support Vector Machine techniques: The TRIO algorithm," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 1-9.
  • Handle: RePEc:eee:reensy:v:129:y:2014:i:c:p:1-9
    DOI: 10.1016/j.ress.2014.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014000623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moura, Márcio das Chagas & Zio, Enrico & Lins, Isis Didier & Droguett, Enrique, 2011. "Failure and reliability prediction by support vector machines regression of time series data," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1527-1534.
    2. Anderson, N. H. & Hall, P. & Titterington, D. M., 1994. "Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions Using Kernel-Based Density Estimates," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 41-54, July.
    3. Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yan-Fu & Zhao, Wei & Zhang, Chen & Ye, Jiantao & He, Huiru, 2024. "A study on the prediction of service reliability of wireless telecommunication system via distribution regression," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Yang Liu & Naiwei Lu & Xinfeng Yin & Mohammad Noori, 2016. "An adaptive support vector regression method for structural system reliability assessment and its application to a cable-stayed bridge," Journal of Risk and Reliability, , vol. 230(2), pages 204-219, April.
    3. Roy, Atin & Chakraborty, Subrata, 2020. "Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    4. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    5. Gao, Shuzhi & Zhang, Sixuan & Zhang, Yimin & Gao, Yue, 2020. "Operational reliability evaluation and prediction of rolling bearing based on isometric mapping and NoCuSa-LSSVM," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    6. Yang Shunkun & Zhang Jiaquan & Lu Dan, 2016. "Prediction of Cascading Failures in Spatial Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-11, April.
    7. Roy, Atin & Chakraborty, Subrata, 2022. "Reliability analysis of structures by a three-stage sequential sampling based adaptive support vector regression model," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Jean-David Fermanian & Dominique Guégan, 2021. "Fair learning with bagging," Documents de travail du Centre d'Economie de la Sorbonne 21034, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    9. Martin L. Hazelton & Tilman M. Davies, 2022. "Pointwise comparison of two multivariate density functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1791-1810, December.
    10. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    11. M. D. Jiménez-Gamero & M. Cousido-Rocha & M. V. Alba-Fernández & F. Jiménez-Jiménez, 2022. "Testing the equality of a large number of populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 1-21, March.
    12. M. D. Jiménez-Gamero & J. L. Moreno-Rebollo & J. A. Mayor-Gallego, 2018. "On the estimation of the characteristic function in finite populations with applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 95-121, March.
    13. Marcelo Fernandes & Eduardo Mendes & Olivier Scaillet, 2015. "Testing for symmetry and conditional symmetry using asymmetric kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 649-671, August.
    14. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    15. Khatibinia, Mohsen & Javad Fadaee, Mohammad & Salajegheh, Javad & Salajegheh, Eysa, 2013. "Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 22-33.
    16. Wu, Xuedong & Chang, Yanchao & Mao, Jianxu & Du, Zhaoping, 2013. "Predicting reliability and failures of engine systems by single multiplicative neuron model with iterated nonlinear filters," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 244-250.
    17. Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
    18. Leopold Simar & Valentin Zelenyuk, 2006. "On Testing Equality of Distributions of Technical Efficiency Scores," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 497-522.
    19. Pavia, Jose M., 2015. "Testing Goodness-of-Fit with the Kernel Density Estimator: GoFKernel," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(c01).
    20. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:129:y:2014:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.