Computing confidence and prediction intervals of industrial equipment degradation by bootstrapped support vector regression
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2015.01.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cribari-Neto, Francisco, 2004. "Asymptotic inference under heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 215-233, March.
- Moura, Márcio das Chagas & Zio, Enrico & Lins, Isis Didier & Droguett, Enrique, 2011. "Failure and reliability prediction by support vector machines regression of time series data," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1527-1534.
- Lins, Isis Didier & Araujo, Moacyr & Moura, Márcio das Chagas & Silva, Marcus André & Droguett, Enrique López, 2013. "Prediction of sea surface temperature in the tropical Atlantic by support vector machines," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 187-198.
- Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
- Davidson, James & Monticini, Andrea & Peel, David, 2007. "Implementing the wild bootstrap using a two-point distribution," Economics Letters, Elsevier, vol. 96(3), pages 309-315, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Chunzhen & Liu, Jingquan & Zeng, Yuyun & Xie, Guangyao, 2019. "Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model," Renewable Energy, Elsevier, vol. 133(C), pages 433-441.
- Arias-Rosales, Andrés & Osorio-Gómez, Gilberto, 2018. "Wind turbine selection method based on the statistical analysis of nominal specifications for estimating the cost of energy," Applied Energy, Elsevier, vol. 228(C), pages 980-998.
- Pan, Yue & Qin, Jianjun & Hou, Yongmao & Chen, Jin-Jian, 2024. "Two-stage support vector machine-enabled deep excavation settlement prediction considering class imbalance and multi-source uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Negreiros, Ana Cláudia Souza Vidal de & Lins, Isis Didier & Moura, Márcio José das Chagas & Droguett, Enrique López, 2020. "Reliability data analysis of systems in the wear-out phase using a (corrected) q-Exponential likelihood," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
- Feng, Liuyang & Zhang, Limao, 2022. "Enhanced prediction intervals of tunnel-induced settlement using the genetic algorithm and neural network," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Yongtong Shao & Tao Xiong & Minghao Li & Dermot Hayes & Wendong Zhang & Wei Xie, 2021.
"China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach,"
American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1082-1098, May.
- Yongtong Shao & Minghao Li & Dermot J. Hayes & Wendong Zhang & Tao Xiong & Wei Xie, 2020. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," Center for Agricultural and Rural Development (CARD) Publications 20-wp607, Center for Agricultural and Rural Development (CARD) at Iowa State University.
- Shao, Yongtong & Xiong, Tao & Li, Minghao & Hayes, Dermot & Zhang, Wendong & Xie, Wei, 2020. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," ISU General Staff Papers 202001010800001619, Iowa State University, Department of Economics.
- Xu, Yuan & Zhang, Mingqing & Ye, Liangliang & Zhu, Qunxiong & Geng, Zhiqiang & He, Yan-Lin & Han, Yongming, 2018. "A novel prediction intervals method integrating an error & self-feedback extreme learning machine with particle swarm optimization for energy consumption robust prediction," Energy, Elsevier, vol. 164(C), pages 137-146.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wu, Xuedong & Chang, Yanchao & Mao, Jianxu & Du, Zhaoping, 2013. "Predicting reliability and failures of engine systems by single multiplicative neuron model with iterated nonlinear filters," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 244-250.
- Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
- Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Yongquan, Sun & Xi, Chen & He, Ren & Yingchao, Jin & Quanwu, Liu, 2016. "Ordering decision-making methods on spare parts for a new aircraft fleet based on a two-sample prediction," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 40-50.
- Benoît Le Maux & Federica Minardy & Charlotte Magalhaes, 2011. "Determinants of Electoral Outcomes: A simple Test of Meltzer and Richard's Hypothesis," Economics Working Paper from Condorcet Center for political Economy at CREM-CNRS 2011-03-ccr, Condorcet Center for political Economy.
- Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
- Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
- repec:ags:aaea22:335733 is not listed on IDEAS
- David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019.
"Fast and wild: Bootstrap inference in Stata using boottest,"
Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
- James G. MacKinnon & Morten Ørregaard Nielsen & David Roodman & Matthew D. Webb, 2018. "Fast and Wild: Bootstrap Inference in Stata Using boottest," CREATES Research Papers 2018-34, Department of Economics and Business Economics, Aarhus University.
- David Roodman & James G. MacKinnon & Matthew D. Webb & Morten Ø. Nielsen, 2018. "Fast And Wild: Bootstrap Inference In Stata Using Boottest," Working Paper 1406, Economics Department, Queen's University.
- Roy, Atin & Chakraborty, Subrata, 2022. "Reliability analysis of structures by a three-stage sequential sampling based adaptive support vector regression model," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
- Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
- Zeileis, Achim, 2006. "Implementing a class of structural change tests: An econometric computing approach," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 2987-3008, July.
- Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
- Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
- Pötscher, Benedikt M. & Preinerstorfer, David, 2023.
"How Reliable Are Bootstrap-Based Heteroskedasticity Robust Tests?,"
Econometric Theory, Cambridge University Press, vol. 39(4), pages 789-847, August.
- Benedikt M. Potscher & David Preinerstorfer, 2020. "How Reliable are Bootstrap-based Heteroskedasticity Robust Tests?," Papers 2005.04089, arXiv.org, revised Nov 2021.
- Pötscher, Benedikt M. & Preinerstorfer, David, 2020. "How Reliable are Bootstrap-based Heteroskedasticity Robust Tests?," MPRA Paper 100234, University Library of Munich, Germany.
- Hagemann, Andreas, 2012. "A simple test for regression specification with non-nested alternatives," Journal of Econometrics, Elsevier, vol. 166(2), pages 247-254.
- Karol Szafranek & Aleksandra Hałka, 2019.
"Determinants of Low Inflation in an Emerging, Small Open Economy through the Lens of Aggregated and Disaggregated Approach,"
Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(13), pages 3094-3111, October.
- Karol Szafranek & Aleksandra Hałka, 2017. "Determinants of low inflation in an emerging, small open economy. A comparison of aggregated and disaggregated approaches," NBP Working Papers 267, Narodowy Bank Polski.
- Aleksandra Halka & Karol Szafranek, 2017. "Determinants of low inflation in emerging, small open economy. Comparison of aggregated and disaggregated approaches," EcoMod2017 10560, EcoMod.
- Nicolas Sommet & Caroline Pulfrey & Fabrizio Butera, 2013. "Did My M.D. Really Go to University to Learn? Detrimental Effects of Numerus Clausus on Self-Efficacy, Mastery Goals and Learning," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
- Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
More about this item
Keywords
Degradation; Prognostics; Uncertainty; Confidence and prediction intervals; Support vector regression; Bootstrap; Scale growth rate;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:137:y:2015:i:c:p:120-128. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.