IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v105y2015ipap84-94.html
   My bibliography  Save this article

Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems

Author

Listed:
  • Stec, Agnieszka
  • Kordana, Sabina

Abstract

Gray water recycling and economical use of rainwater can be a valuable alternative source of water, especially for non-potable uses. These sources are seen as the basis of change in waters management, which gives a possibility of protection of still shrinking water resources. Taking into account continuing urbanization and population growth in the world, not only the management of water resources requires a change in attitudes, but also the management and conservation of conventional fuels that energy is generated of, and that are required for the development and functioning of urban areas. Bearing this in mind, some studies have been performed in order to establish the cost-effectiveness of application systems capable of reducing the demand for tap water and electricity used to heat it. A financial analysis with an application of the Life Cycle Cost methodology has been conducted for a multi-family residential building for seven different variants of installation of water and sewage, which assumed the use of the following solutions: gray water harvesting system, rainwater harvesting system and drain water heat recovery units. This analysis showed that the use of these systems in the tested building is financially viable, despite the fact that their implementation is associated with incurring higher investment cost than in the base case (Variant 0). The study was expanded by a sensitivity analysis on the basis of which it was possible to conclude that the project involving the use of alternative sources of pending water and energy in this building is only slightly susceptible to changes in calculation parameters.

Suggested Citation

  • Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
  • Handle: RePEc:eee:recore:v:105:y:2015:i:pa:p:84-94
    DOI: 10.1016/j.resconrec.2015.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092134491530104X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pahl-Wostl, Claudia & Tabara, David & Bouwen, Rene & Craps, Marc & Dewulf, Art & Mostert, Erik & Ridder, Dagmar & Taillieu, Tharsi, 2008. "The importance of social learning and culture for sustainable water management," Ecological Economics, Elsevier, vol. 64(3), pages 484-495, January.
    2. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2015. "Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach," Applied Energy, Elsevier, vol. 144(C), pages 261-275.
    3. Muthukumaran, Shobha & Baskaran, Kanagaratnam & Sexton, Nicole, 2011. "Quantification of potable water savings by residential water conservation and reuse – A case study," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 945-952.
    4. Ghisi, Enedir & Rupp, Ricardo Forgiarini & Triska, Yuri, 2014. "Comparing indicators to rank strategies to save potable water in buildings," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 137-144.
    5. Morales-Pinzón, Tito & Lurueña, Rodrigo & Rieradevall, Joan & Gasol, Carles M. & Gabarrell, Xavier, 2012. "Financial feasibility and environmental analysis of potential rainwater harvesting systems: A case study in Spain," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 130-140.
    6. Jones, Matthew P. & Hunt, William F., 2010. "Performance of rainwater harvesting systems in the southeastern United States," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 623-629.
    7. Panigrahi, Balram & Panda, Sudhindra N & Mal, Bimal Chandra, 2007. "Rainwater conservation and recycling by optimal size on-farm reservoir," Resources, Conservation & Recycling, Elsevier, vol. 50(4), pages 459-474.
    8. Wu, Wei & You, Tian & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump," Applied Energy, Elsevier, vol. 126(C), pages 113-122.
    9. Ghisi, Enedir & Tavares, Davi da Fonseca & Rocha, Vinicius Luis, 2009. "Rainwater harvesting in petrol stations in Brasília: Potential for potable water savings and investment feasibility analysis," Resources, Conservation & Recycling, Elsevier, vol. 54(2), pages 79-85.
    10. Leme, Marcio Montagnana Vicente & Rocha, Mateus Henrique & Lora, Electo Eduardo Silva & Venturini, Osvaldo José & Lopes, Bruno Marciano & Ferreira, Cláudio Homero, 2014. "Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 8-20.
    11. Rebekah Brown & Richard Ashley & Megan Farrelly, 2011. "Political and Professional Agency Entrapment: An Agenda for Urban Water Research," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(15), pages 4037-4050, December.
    12. Imteaz, Monzur Alam & Adeboye, Omotayo B. & Rayburg, Scott & Shanableh, Abdallah, 2012. "Rainwater harvesting potential for southwest Nigeria using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 62(C), pages 51-55.
    13. Liang, Xiao & van Dijk, Meine Pieter, 2011. "Economic and financial analysis on rainwater harvesting for agricultural irrigation in the rural areas of Beijing," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1100-1108.
    14. Vargas-Parra, M. Violeta & Villalba, Gara & Gabarrell, Xavier, 2013. "Applying exergy analysis to rainwater harvesting systems to assess resource efficiency," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 50-59.
    15. David Stern & Robert Kaufmann, 2014. "Anthropogenic and natural causes of climate change," Climatic Change, Springer, vol. 122(1), pages 257-269, January.
    16. Mahmoud, Wifag Hassan & Elagib, Nadir Ahmed & Gaese, Hartmut & Heinrich, Jürgen, 2014. "Rainfall conditions and rainwater harvesting potential in the urban area of Khartoum," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 89-99.
    17. Gao, Hongchao & Wei, Tong & Lou, Inchio & Yang, Zhifeng & Shen, Zhenyao & Li, Yingxia, 2014. "Water saving effect on integrated water resource management," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 50-58.
    18. Jha, Madan K. & Chowdary, V.M. & Kulkarni, Y. & Mal, B.C., 2014. "Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 96-111.
    19. Martire, Salvatore & Castellani, Valentina & Sala, Serenella, 2015. "Carrying capacity assessment of forest resources: Enhancing environmental sustainability in energy production at local scale," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 11-20.
    20. Imteaz, Monzur Alam & Ahsan, Amimul & Shanableh, Abdallah, 2013. "Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 37-43.
    21. Imteaz, Monzur Alam & Shanableh, Abdallah & Rahman, Ataur & Ahsan, Amimul, 2011. "Optimisation of rainwater tank design from large roofs: A case study in Melbourne, Australia," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1022-1029.
    22. Olanike Aladenola & Omotayo Adeboye, 2010. "Assessing the Potential for Rainwater Harvesting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2129-2137, August.
    23. Mandal, Deepika & Labhasetwar, Pawan & Dhone, Shankar & Dubey, Ajay Shankar & Shinde, Gangadhar & Wate, Satish, 2011. "Water conservation due to greywater treatment and reuse in urban setting with specific context to developing countries," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 356-361.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Musz-Pomorska & Marcin K. Widomski & Justyna Gołębiowska, 2024. "Financial Aspects of Sustainable Rainwater Management in Small-Scale Urban Housing Communities," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    2. Damian Maciorowski & Maciej Jan Spychala & Danuta Miedzinska, 2024. "An Experimental and Numerical Investigation of a Heat Exchanger for Showers," Energies, MDPI, vol. 17(15), pages 1-16, July.
    3. Haniye Safarpour & Massoud Tabesh & Seyyed Ahmadreza Shahangian & Mohsen Hajibabaei & Robert Sitzenfrei, 2022. "Life Cycle Sustainability Assessment of Wastewater Systems under Applying Water Demand Management Policies," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    4. Beata Piotrowska & Daniel Słyś & Sabina Kordana-Obuch & Kamil Pochwat, 2020. "Critical Analysis of the Current State of Knowledge in the Field of Waste Heat Recovery in Sewage Systems," Resources, MDPI, vol. 9(6), pages 1-14, June.
    5. Beata Piotrowska & Daniel Słyś, 2022. "Comprehensive Analysis of the State of Technology in the Field of Waste Heat Recovery from Grey Water," Energies, MDPI, vol. 16(1), pages 1-20, December.
    6. Dumit Gómez, Yapur & Teixeira, Luiza Girard, 2017. "Residential rainwater harvesting: Effects of incentive policies and water consumption over economic feasibility," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 56-67.
    7. Edyta Dudkiewicz & Agnieszka Ludwińska, 2023. "Family Dwelling House Localization in Poland as a Factor Influencing the Economic Effect of Rainwater Harvesting System with Underground Tank," Sustainability, MDPI, vol. 15(13), pages 1-25, July.
    8. Krzysztof Rajski & Sebastian Englart & Ali Sohani, 2024. "Analysis of Greywater Recovery Systems in European Single-Family Buildings: Economic and Environmental Impacts," Sustainability, MDPI, vol. 16(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    2. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    3. Imteaz, Monzur Alam & Ahsan, Amimul & Shanableh, Abdallah, 2013. "Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 37-43.
    4. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    5. Imteaz, Monzur Alam & Rahman, Ataur & Ahsan, Amimul, 2012. "Reliability analysis of rainwater tanks: A comparison between South-East and Central Melbourne," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 1-7.
    6. Rahman, Ataur & Keane, Joseph & Imteaz, Monzur Alam, 2012. "Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 16-21.
    7. Elissavet Feloni & Panagiotis T. Nastos, 2024. "Evaluating Rainwater Harvesting Systems for Water Scarcity Mitigation in Small Greek Islands under Climate Change," Sustainability, MDPI, vol. 16(6), pages 1-14, March.
    8. Agnieszka Stec & Daniel Słyś, 2022. "Financial and Social Factors Influencing the Use of Unconventional Water Systems in Single-Family Houses in Eight European Countries," Resources, MDPI, vol. 11(2), pages 1-25, January.
    9. Okoye, Chiemeka Onyeka & Solyalı, Oğuz & Akıntuğ, Bertuğ, 2015. "Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 131-140.
    10. Youn, Seok-goo & Chung, Eun-Sung & Kang, Won Gu & Sung, Jang Hyun, 2012. "Probabilistic estimation of the storage capacity of a rainwater harvesting system considering climate change," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 136-144.
    11. Santos, C. & Taveira-Pinto, F., 2013. "Analysis of different criteria to size rainwater storage tanks using detailed methods," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 1-6.
    12. Imteaz, Monzur Alam & Adeboye, Omotayo B. & Rayburg, Scott & Shanableh, Abdallah, 2012. "Rainwater harvesting potential for southwest Nigeria using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 62(C), pages 51-55.
    13. Mahmood, Asif & Hossain, Faisal, 2017. "Feasibility of managed domestic rainwater harvesting in South Asian rural areas using remote sensing," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 157-168.
    14. Cook, Stephen & Sharma, Ashok K & Gurung, Thulo Ram, 2014. "Evaluation of alternative water sources for commercial buildings: A case study in Brisbane, Australia," Resources, Conservation & Recycling, Elsevier, vol. 89(C), pages 86-93.
    15. Ghisi, Enedir & Rupp, Ricardo Forgiarini & Triska, Yuri, 2014. "Comparing indicators to rank strategies to save potable water in buildings," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 137-144.
    16. Moreira Neto, Ronan Fernandes & Calijuri, Maria Lúcia & Carvalho, Isabella de Castro & Santiago, Aníbal da Fonseca, 2012. "Rainwater treatment in airports using slow sand filtration followed by chlorination: Efficiency and costs," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 124-129.
    17. Moreira Neto, Ronan Fernandes & Carvalho, Isabella de Castro & Calijuri, Maria Lúcia & Santiago, Aníbal da Fonseca, 2012. "Rainwater use in airports: A case study in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 36-43.
    18. Proença, Lúcio Costa & Ghisi, Enedir & Tavares, Davi da Fonseca & Coelho, Gabriel Marcon, 2011. "Potential for electricity savings by reducing potable water consumption in a city scale," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 960-965.
    19. Shao, Dongguo & Tan, Xuezhi & Liu, Huanhuan & Yang, Haidong & Xiao, Chun & Yang, Fengshun, 2013. "Performance analysis of on-farm irrigation tanks on agricultural drainage water reuse and treatment," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 1-13.
    20. Bocanegra-Martínez, Andrea & Ponce-Ortega, José María & Nápoles-Rivera, Fabricio & Serna-González, Medardo & Castro-Montoya, Agustín Jaime & El-Halwagi, Mahmoud M., 2014. "Optimal design of rainwater collecting systems for domestic use into a residential development," Resources, Conservation & Recycling, Elsevier, vol. 84(C), pages 44-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:105:y:2015:i:pa:p:84-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.