IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v55y2011i11p960-965.html
   My bibliography  Save this article

Potential for electricity savings by reducing potable water consumption in a city scale

Author

Listed:
  • Proença, Lúcio Costa
  • Ghisi, Enedir
  • Tavares, Davi da Fonseca
  • Coelho, Gabriel Marcon

Abstract

Nowadays, it is very important that water and energy resources are used appropriately as this is a challenge to promote sustainable development. In some sectors, such as water and sewerage utilities, energy consumption depends on water consumption. The main objective of this work is to estimate the potential for electricity savings in a water and sewerage utility by reducing potable water consumption in the residential, commercial and public sectors in the city of Florianópolis, southern Brazil. These three sectors account for 98.9% of the total water consumption in the city. By using data related to energy consumption and costs that apply to the local water utility for water and sewage treatment, and also the potential for potable water savings over the three sectors, it is possible to estimate the potential for energy savings by reducing potable water consumption and sewage treatment. Potable water savings were estimated by using data available in the literature about water end-uses for different types of buildings located in Florianópolis. Three options were considered: installing dual-flush toilets, reusing greywater and using rainwater. The average potential for potable water savings were 30.0%, 53.4% and 60.3%, respectively, for the residential, commercial and public sectors. Thus, the average potable water savings amount to about 10,153,835m3/year, and the electricity savings amount to 4.4GWh/year, which would be enough to supply 1217 houses or flats in Florianópolis, with an average energy consumption of 300kWh/month.

Suggested Citation

  • Proença, Lúcio Costa & Ghisi, Enedir & Tavares, Davi da Fonseca & Coelho, Gabriel Marcon, 2011. "Potential for electricity savings by reducing potable water consumption in a city scale," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 960-965.
  • Handle: RePEc:eee:recore:v:55:y:2011:i:11:p:960-965
    DOI: 10.1016/j.resconrec.2011.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344911000863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2011.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Liu & Lam, Joseph C. & Tsang, C.L., 2008. "Energy performance of building envelopes in different climate zones in China," Applied Energy, Elsevier, vol. 85(9), pages 800-817, September.
    2. Proença, Lúcio Costa & Ghisi, Enedir, 2010. "Water end-uses in Brazilian office buildings," Resources, Conservation & Recycling, Elsevier, vol. 54(8), pages 489-500.
    3. Allan, Gordon, 2006. "Assessing capital efficiency in the water and sewerage industry in England and Wales: Ofwat's approach," Utilities Policy, Elsevier, vol. 14(4), pages 224-233, December.
    4. Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(10), pages 1970-1985, October.
    5. Mugabi, Josses & Kayaga, Sam & Njiru, Cyrus, 2007. "Strategic planning for water utilities in developing countries," Utilities Policy, Elsevier, vol. 15(1), pages 1-8, March.
    6. Jones, Matthew P. & Hunt, William F., 2010. "Performance of rainwater harvesting systems in the southeastern United States," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 623-629.
    7. Ghisi, Enedir & Tavares, Davi da Fonseca & Rocha, Vinicius Luis, 2009. "Rainwater harvesting in petrol stations in Brasília: Potential for potable water savings and investment feasibility analysis," Resources, Conservation & Recycling, Elsevier, vol. 54(2), pages 79-85.
    8. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    9. Enedir Ghisi, 2010. "Parameters Influencing the Sizing of Rainwater Tanks for Use in Houses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2381-2403, August.
    10. Chiu, Yie-Ru & Liaw, Chao-Hsien & Chen, Liang-Ching, 2009. "Optimizing rainwater harvesting systems as an innovative approach to saving energy in hilly communities," Renewable Energy, Elsevier, vol. 34(3), pages 492-498.
    11. Ucar, Aynur & Balo, Figen, 2010. "Determination of the energy savings and the optimum insulation thickness in the four different insulated exterior walls," Renewable Energy, Elsevier, vol. 35(1), pages 88-94.
    12. Sabbioni, Guillermo, 2008. "Efficiency in the Brazilian sanitation sector," Utilities Policy, Elsevier, vol. 16(1), pages 11-20, March.
    13. Godfrey, Sam & Labhasetwar, Pawan & Wate, Satish, 2009. "Greywater reuse in residential schools in Madhya Pradesh, India—A case study of cost–benefit analysis," Resources, Conservation & Recycling, Elsevier, vol. 53(5), pages 287-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marian Garcia-Valiñas & Fernando Arbués & Roberto Balado-Naves, 2023. "Assessing environmental profiles: An analysis of water consumption and waste recycling habits," Efficiency Series Papers 2023/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreira Neto, Ronan Fernandes & Calijuri, Maria Lúcia & Carvalho, Isabella de Castro & Santiago, Aníbal da Fonseca, 2012. "Rainwater treatment in airports using slow sand filtration followed by chlorination: Efficiency and costs," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 124-129.
    2. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    3. Moreira Neto, Ronan Fernandes & Carvalho, Isabella de Castro & Calijuri, Maria Lúcia & Santiago, Aníbal da Fonseca, 2012. "Rainwater use in airports: A case study in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 36-43.
    4. P. Londra & A. Theocharis & E. Baltas & V. Tsihrintzis, 2015. "Optimal Sizing of Rainwater Harvesting Tanks for Domestic Use in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4357-4377, September.
    5. Freire, Roberto Zanetti & Mazuroski, Walter & Abadie, Marc Olivier & Mendes, Nathan, 2011. "Capacitive effect on the heat transfer through building glazing systems," Applied Energy, Elsevier, vol. 88(12), pages 4310-4319.
    6. Geraldi, Matheus Soares & Ghisi, Enedir, 2017. "Influence of the length of rainfall time series on rainwater harvesting systems: A case study in Berlin," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 169-180.
    7. Elissavet Feloni & Panagiotis T. Nastos, 2024. "Evaluating Rainwater Harvesting Systems for Water Scarcity Mitigation in Small Greek Islands under Climate Change," Sustainability, MDPI, vol. 16(6), pages 1-14, March.
    8. Mourshed, Monjur, 2011. "The impact of the projected changes in temperature on heating and cooling requirements in buildings in Dhaka, Bangladesh," Applied Energy, Elsevier, vol. 88(11), pages 3737-3746.
    9. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    10. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    11. Zheng, Guozhong & Jing, Youyin & Huang, Hongxia & Gao, Yuefen, 2010. "Application of improved grey relational projection method to evaluate sustainable building envelope performance," Applied Energy, Elsevier, vol. 87(2), pages 710-720, February.
    12. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    13. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    14. Jinrong Wu & Su Nguyen & Damminda Alahakoon & Daswin De Silva & Nishan Mills & Prabod Rathnayaka & Harsha Moraliyage & Andrew Jennings, 2024. "A Comparative Analysis of Machine Learning-Based Energy Baseline Models across Multiple Building Types," Energies, MDPI, vol. 17(6), pages 1-18, March.
    15. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    16. Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
    17. José Luis Bonifaz & Reyk Itakura, 2014. "An analysis of inefficiency of big urban water utilities in Latin-America," Working Papers 14-13, Centro de Investigación, Universidad del Pacífico.
    18. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    19. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    20. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:55:y:2011:i:11:p:960-965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.