IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v50y2007i4p459-474.html
   My bibliography  Save this article

Rainwater conservation and recycling by optimal size on-farm reservoir

Author

Listed:
  • Panigrahi, Balram
  • Panda, Sudhindra N
  • Mal, Bimal Chandra

Abstract

Hydrologic and economic analysis of the on-farm reservoir (OFR) was carried out in rainfed rice–mustard cropping systems in Eastern India followed by 2 years of field experiments in 1999 and 2000. The average contribution (average of 2 years) of direct rainfall and surface runoff from the diked crop fields contributed, respectively, about 79.5 and 20.5% to the total OFR inflow. The average contribution of evaporation loss, seepage and percolation loss and supplemental irrigation from the OFR contributed, respectively, about 10.0, 31.2 and 58.8% to the total OFR outflow. There was an average increase of rice yield of 44.0% over the rainfed rice because of application of 8.4cm supplemental irrigation from the OFR. Thus, with an application of 4.5cm supplemental irrigation from the OFR, 15.40% increase of mustard yield was recorded in 1999. Economic analysis indicated average net profit of Rs. 700 (US$ 1=Rupees (Rs.) 44.75 in Indian currency) from a farm area of 800m2. Average values of benefit–cost ratio, internal rate of return and pay back period of the OFR irrigation system were evaluated as 1.17, 14.8%, and 16 years, respectively. The study reveals that the OFR irrigation in small landholders is economically feasible system for rainwater harvesting and providing supplemental irrigation in rainfed farming system.

Suggested Citation

  • Panigrahi, Balram & Panda, Sudhindra N & Mal, Bimal Chandra, 2007. "Rainwater conservation and recycling by optimal size on-farm reservoir," Resources, Conservation & Recycling, Elsevier, vol. 50(4), pages 459-474.
  • Handle: RePEc:eee:recore:v:50:y:2007:i:4:p:459-474
    DOI: 10.1016/j.resconrec.2006.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344906001790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2006.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guerra, L. C. & Watson, P. G. & Bhuiyan, S. I., 1990. "Hydrological analysis of farm reservoirs in rainfed rice areas," Agricultural Water Management, Elsevier, vol. 17(4), pages 351-366, March.
    2. Verma, H. N. & Sarma, P. B. S., 1990. "Design of storage tanks for water harvesting in rainfed areas," Agricultural Water Management, Elsevier, vol. 18(3), pages 195-207, September.
    3. Oweis, T. & Hachum, A. & Kijne, J., 1999. "Water harvesting and supplemental irrigation for improved water use efficiency in dry areas," IWMI Books, Reports H024198, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Xiao & van Dijk, Meine Pieter, 2011. "Economic and financial analysis on rainwater harvesting for agricultural irrigation in the rural areas of Beijing," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1100-1108.
    2. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    3. Cheng, C.L. & Liao, M.C., 2009. "Regional rainfall level zoning for rainwater harvesting systems in northern Taiwan," Resources, Conservation & Recycling, Elsevier, vol. 53(8), pages 421-428.
    4. Elissavet Feloni & Panagiotis T. Nastos, 2024. "Evaluating Rainwater Harvesting Systems for Water Scarcity Mitigation in Small Greek Islands under Climate Change," Sustainability, MDPI, vol. 16(6), pages 1-14, March.
    5. Proença, Lúcio Costa & Ghisi, Enedir, 2010. "Water end-uses in Brazilian office buildings," Resources, Conservation & Recycling, Elsevier, vol. 54(8), pages 489-500.
    6. Ghisi, Enedir & Tavares, Davi da Fonseca & Rocha, Vinicius Luis, 2009. "Rainwater harvesting in petrol stations in Brasília: Potential for potable water savings and investment feasibility analysis," Resources, Conservation & Recycling, Elsevier, vol. 54(2), pages 79-85.
    7. Shao, Dongguo & Tan, Xuezhi & Liu, Huanhuan & Yang, Haidong & Xiao, Chun & Yang, Fengshun, 2013. "Performance analysis of on-farm irrigation tanks on agricultural drainage water reuse and treatment," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 1-13.
    8. Youn, Seok-goo & Chung, Eun-Sung & Kang, Won Gu & Sung, Jang Hyun, 2012. "Probabilistic estimation of the storage capacity of a rainwater harvesting system considering climate change," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 136-144.
    9. Su, Ming-Daw & Lin, Chun-Hung & Chang, Ling-Fang & Kang, Jui-Lin & Lin, Mei-Chun, 2009. "A probabilistic approach to rainwater harvesting systems design and evaluation," Resources, Conservation & Recycling, Elsevier, vol. 53(7), pages 393-399.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panigrahi, B. & Panda, S. N. & Mull, R., 2001. "Simulation of water harvesting potential in rainfed ricelands using water balance model," Agricultural Systems, Elsevier, vol. 69(3), pages 165-182, September.
    2. B. Panigrahi & Sudhindra Panda & A. Agrawal, 2005. "Water Balance Simulation and Economic Analysis for Optimal Size of On-Farm Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(3), pages 233-250, June.
    3. Srivastava, R. C., 2001. "Methodology for design of water harvesting system for high rainfall areas," Agricultural Water Management, Elsevier, vol. 47(1), pages 37-53, February.
    4. Oweis, T. & Hachum, A., 2009. "Water harvesting for improved rainfed agriculture in the dry environments," IWMI Books, Reports H041998, International Water Management Institute.
    5. Joshi, P. K. & Pangare, V. & Shiferaw, B. & Wani, S. P. & Bouma, Jetske & Scott, Christopher, 2004. "Socioeconomic and policy research on watershed management in India: synthesis of past experiences and needs for future research," IWMI Research Reports H035345, International Water Management Institute.
    6. Alvaro Alberto López-Lambraño & Luisa Martínez-Acosta & Ena Gámez-Balmaceda & Juan Pablo Medrano-Barboza & John Freddy Remolina López & Alvaro López-Ramos, 2020. "Supply and Demand Analysis of Water Resources. Case Study: Irrigation Water Demand in a Semi-Arid Zone in Mexico," Agriculture, MDPI, vol. 10(8), pages 1-20, August.
    7. Mintesinot, B. & Verplancke, H. & Van Ranst, E. & Mitiku, H., 2004. "Examining traditional irrigation methods, irrigation scheduling and alternate furrows irrigation on vertisols in northern Ethiopia," Agricultural Water Management, Elsevier, vol. 64(1), pages 17-27, January.
    8. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
    9. Raes, Dirk & Geerts, Sam & Kipkorir, Emmanuel & Wellens, Joost & Sahli, Ali, 2006. "Simulation of yield decline as a result of water stress with a robust soil water balance model," Agricultural Water Management, Elsevier, vol. 81(3), pages 335-357, March.
    10. Mpatane, O. & Kayombo, Benedict & Patrick, C. & Malope, P. & Tapela, M., 2016. "An assessment of socio-economic potential for Rain Water Harvesting (RWH) in semi-arid Bobirwa Sub-district of Eastern Botswana," African Journal of Rural Development (AFJRD), AFrican Journal of Rural Development (AFJRD), vol. 1(1), June.
    11. Awulachew, Seleshi Bekele, 2006. "Improved agricultural water management: assessment of constraints and opportunities for agricultural development in Ethiopia," Conference Papers h039627, International Water Management Institute.
    12. Kumar, M. Dinesh & van Dam, J. C., 2008. "Improving water productivity in agriculture in developing economies: in search of new avenues," IWMI Conference Proceedings 245276, International Water Management Institute.
    13. Osman, Rehab & Ferrari, Emanuele & McDonald, Scott, 2015. "Water Quality Assessment SAM/CGE and Satellite Accounts Integrated Framework-Egypt," 89th Annual Conference, April 13-15, 2015, Warwick University, Coventry, UK 204292, Agricultural Economics Society.
    14. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.
    15. Rockstr m, J. & Barron, J. & Fox, P., 2003. "Water productivity in rain-fed agriculture: challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems," IWMI Books, Reports H032640, International Water Management Institute.
    16. Fouda Ekobena, Par Simon Yannick, 2014. "Commerce intra-regional et croissance economique: quels enjeux pour la securite alimentaire dans lespace CEMAC?," Conference papers 332559, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Kemeze, Francis H., 2020. "Demand for Supplemental Irrigation via Small-Scale Water Harvesting," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304569, Agricultural and Applied Economics Association.
    18. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    19. Oweis, T. Y. & Hachum, A. Y., 2003. "Improving water productivity in the dry areas of West Asia and North Africa," IWMI Books, Reports H032642, International Water Management Institute.
    20. Oweis, Theib & Hachum, Ahmed, 2001. "Reducing peak supplemental irrigation demand by extending sowing dates," Agricultural Water Management, Elsevier, vol. 50(2), pages 109-123, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:50:y:2007:i:4:p:459-474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.