IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v126y2017icp74-85.html
   My bibliography  Save this article

Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China

Author

Listed:
  • Jing, Xueer
  • Zhang, Shouhong
  • Zhang, Jianjun
  • Wang, Yujie
  • Wang, Yunqi

Abstract

Rainwater harvesting is now increasingly used to manage urban flood and alleviate water scarcity crisis. In this study, a computational tool based on water balance equation is developed to assess stormwater capture and water saving efficiency and economic viability of rainwater harvesting systems (RHS) in eight cities across four climatic zones of China. It requires daily rainfall, contributing area, runoff losses, first flush volume, storage capacity, daily water demand and economic parameters as inputs. Three non-potable water demand scenarios (i.e., toilet flushing, lawn irrigation, and combination of them) are considered. The water demand for lawn irrigation is estimated using the Cropwat 8.0 and Climwat 2.0. Results indicate that higher water saving efficiency and water supply time reliability can be achieved for RHS with larger storage capacities, for lower water demand scenarios and located in more humid regions, while higher stormwater capture efficiency is associated with larger storage capacity, higher water demand scenarios and less rainfall. For instance, a 40m3 RHS in Shanghai (humid climate) for lawn irrigation can capture 17% of stormwater, while its water saving efficiency and time reliability can reach 96% and 98%, respectively. The water saving efficiency and time reliability of a 20m3 RHS in Xining (semi-arid climate) for toilet flushing are 19% and 16%, respectively, but it can capture 63% of stormwater. With the current values of economic parameters, economic viability of RHS can be achieved in humid and semi-humid regions for reasonably designed RHS; however, it is not financially viable to install RHS in arid regions as the benefit-cost ratio is much smaller than 1.0.

Suggested Citation

  • Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
  • Handle: RePEc:eee:recore:v:126:y:2017:i:c:p:74-85
    DOI: 10.1016/j.resconrec.2017.07.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917302069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.07.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.
    2. Campisano, Alberto & Modica, Carlo, 2012. "Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 9-16.
    3. Rostad, Nathan & Foti, Romano & Montalto, Franco A., 2016. "Harvesting rooftop runoff to flush toilets: Drawing conclusions from four major U.S. cities," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 97-106.
    4. Palla, A. & Gnecco, I. & Lanza, L.G. & La Barbera, P., 2012. "Performance analysis of domestic rainwater harvesting systems under various European climate zones," Resources, Conservation & Recycling, Elsevier, vol. 62(C), pages 71-80.
    5. Eroksuz, Erhan & Rahman, Ataur, 2010. "Rainwater tanks in multi-unit buildings: A case study for three Australian cities," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1449-1452.
    6. Jones, Matthew P. & Hunt, William F., 2010. "Performance of rainwater harvesting systems in the southeastern United States," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 623-629.
    7. Hashim, H. & Hudzori, A. & Yusop, Z. & Ho, W.S., 2013. "Simulation based programming for optimization of large-scale rainwater harvesting system: Malaysia case study," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 1-9.
    8. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    9. Tam, Vivian W.Y. & Tam, Leona & Zeng, S.X., 2010. "Cost effectiveness and tradeoff on the use of rainwater tank: An empirical study in Australian residential decision-making," Resources, Conservation & Recycling, Elsevier, vol. 54(3), pages 178-186.
    10. Liang, Xiao & van Dijk, Meine Pieter, 2011. "Economic and financial analysis on rainwater harvesting for agricultural irrigation in the rural areas of Beijing," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1100-1108.
    11. Okoye, Chiemeka Onyeka & Solyalı, Oğuz & Akıntuğ, Bertuğ, 2015. "Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 131-140.
    12. Karim, Md. Rezaul & Bashar, Mohammad Zobair Ibne & Imteaz, Monzur Alam, 2015. "Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 61-67.
    13. Enedir Ghisi, 2010. "Parameters Influencing the Sizing of Rainwater Tanks for Use in Houses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2381-2403, August.
    14. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.
    15. Rahman, Ataur & Keane, Joseph & Imteaz, Monzur Alam, 2012. "Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 16-21.
    16. Suzanne Dallman & Anita M. Chaudhry & Misgana K. Muleta & Juneseok Lee, 2016. "The Value of Rain: Benefit-Cost Analysis of Rainwater Harvesting Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4415-4428, September.
    17. Rashidi Mehrabadi, Mohammad Hossein & Saghafian, Bahram & Haghighi Fashi, Fereshte, 2013. "Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 86-93.
    18. Imteaz, Monzur Alam & Ahsan, Amimul & Shanableh, Abdallah, 2013. "Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 37-43.
    19. Xingqi Zhang & Maochuan Hu & Gang Chen & Youpeng Xu, 2012. "Urban Rainwater Utilization and its Role in Mitigating Urban Waterlogging Problems—A Case Study in Nanjing, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3757-3766, October.
    20. Imteaz, Monzur Alam & Ahsan, Amimul & Naser, Jamal & Rahman, Ataur, 2011. "Reliability analysis of rainwater tanks in Melbourne using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 80-86.
    21. Imteaz, Monzur Alam & Shanableh, Abdallah & Rahman, Ataur & Ahsan, Amimul, 2011. "Optimisation of rainwater tank design from large roofs: A case study in Melbourne, Australia," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1022-1029.
    22. Bocanegra-Martínez, Andrea & Ponce-Ortega, José María & Nápoles-Rivera, Fabricio & Serna-González, Medardo & Castro-Montoya, Agustín Jaime & El-Halwagi, Mahmoud M., 2014. "Optimal design of rainwater collecting systems for domestic use into a residential development," Resources, Conservation & Recycling, Elsevier, vol. 84(C), pages 44-56.
    23. Vialle, C. & Busset, G. & Tanfin, L. & Montrejaud-Vignoles, M. & Huau, M.-C. & Sablayrolles, C., 2015. "Environmental analysis of a domestic rainwater harvesting system: A case study in France," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 178-184.
    24. Xingqi Zhang & Maochuan Hu, 2014. "Effectiveness of Rainwater Harvesting in Runoff Volume Reduction in a Planned Industrial Park, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 671-682, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Lopes Souto & Ricardo Prado Abreu Reis & Marcus André Siqueira Campos, 2023. "Impact of Installing Rainwater Harvesting System on Urban Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 583-600, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okoye, Chiemeka Onyeka & Solyalı, Oğuz & Akıntuğ, Bertuğ, 2015. "Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 131-140.
    2. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    3. Imteaz, Monzur Alam & Ahsan, Amimul & Shanableh, Abdallah, 2013. "Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 37-43.
    4. Moniruzzaman, Muhammad & Imteaz, Monzur A., 2017. "Generalized equations, climatic and spatial variabilities of potential rainwater savings: A case study for Sydney," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 139-156.
    5. Moreira Neto, Ronan Fernandes & Carvalho, Isabella de Castro & Calijuri, Maria Lúcia & Santiago, Aníbal da Fonseca, 2012. "Rainwater use in airports: A case study in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 36-43.
    6. Hashim, H. & Hudzori, A. & Yusop, Z. & Ho, W.S., 2013. "Simulation based programming for optimization of large-scale rainwater harvesting system: Malaysia case study," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 1-9.
    7. Daniel Słyś & Agnieszka Stec, 2020. "Centralized or Decentralized Rainwater Harvesting Systems: A Case Study," Resources, MDPI, vol. 9(1), pages 1-18, January.
    8. Karim, Md. Rezaul & Bashar, Mohammad Zobair Ibne & Imteaz, Monzur Alam, 2015. "Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 61-67.
    9. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    10. Mahmood, Asif & Hossain, Faisal, 2017. "Feasibility of managed domestic rainwater harvesting in South Asian rural areas using remote sensing," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 157-168.
    11. Silva Vieira, A. & Weeber, M. & Ghisi, E., 2013. "Self-cleaning filtration: A novel concept for rainwater harvesting systems," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 67-73.
    12. Rostad, Nathan & Foti, Romano & Montalto, Franco A., 2016. "Harvesting rooftop runoff to flush toilets: Drawing conclusions from four major U.S. cities," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 97-106.
    13. Silva, Marcos Dornelas Freitas Machado e & Calijuri, Maria Lúcia & Sales, Francisco José Ferreira de & Souza, Mauro Henrique Batalha de & Lopes, Lucas Sampaio, 2014. "Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 71-81.
    14. Campisano, Alberto & Modica, Carlo, 2012. "Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 9-16.
    15. Dumit Gómez, Yapur & Teixeira, Luiza Girard, 2017. "Residential rainwater harvesting: Effects of incentive policies and water consumption over economic feasibility," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 56-67.
    16. Rahman, Ataur & Keane, Joseph & Imteaz, Monzur Alam, 2012. "Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 16-21.
    17. Agnieszka Stec & Daniel Słyś, 2022. "Financial and Social Factors Influencing the Use of Unconventional Water Systems in Single-Family Houses in Eight European Countries," Resources, MDPI, vol. 11(2), pages 1-25, January.
    18. Abdul Salam Khan, 2023. "A Comparative Analysis of Rainwater Harvesting System and Conventional Sources of Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2083-2106, March.
    19. Xueer Jing & Shouhong Zhang & Jianjun Zhang & Yujie Wang & Yunqi Wang & Tongjia Yue, 2018. "Analysis and Modelling of Stormwater Volume Control Performance of Rainwater Harvesting Systems in Four Climatic Zones of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2649-2664, June.
    20. Imteaz, Monzur Alam & Adeboye, Omotayo B. & Rayburg, Scott & Shanableh, Abdallah, 2012. "Rainwater harvesting potential for southwest Nigeria using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 62(C), pages 51-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:126:y:2017:i:c:p:74-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.