IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7736-d847278.html
   My bibliography  Save this article

Life Cycle Sustainability Assessment of Wastewater Systems under Applying Water Demand Management Policies

Author

Listed:
  • Haniye Safarpour

    (School of Civil Engineering, College of Engineering, University of Tehran, Tehran 14176-13131, Iran)

  • Massoud Tabesh

    (School of Civil Engineering, College of Engineering, University of Tehran, Tehran 14176-13131, Iran)

  • Seyyed Ahmadreza Shahangian

    (School of Civil Engineering, College of Engineering, University of Tehran, Tehran 14176-13131, Iran)

  • Mohsen Hajibabaei

    (Unit of Environmental Engineering, Department of Infrastructure Engineering, University of Innsbruck, 6020 Innsbruck, Austria)

  • Robert Sitzenfrei

    (Unit of Environmental Engineering, Department of Infrastructure Engineering, University of Innsbruck, 6020 Innsbruck, Austria)

Abstract

Sustainability assessment of urban water and wastewater infrastructures, especially when it comes to managing existing systems, is of paramount importance. Hence, this study presents a comprehensive approach to investigate the sustainability of a real wastewater system under different water demand management policies (WDMPs) in the operation and maintenance stage. In this regard, life cycle sustainability assessment (LCSA) is used through its three main pillars, which are (1) environment, (2) economy, and (3) society. Accordingly, (1) Environmental assessment is conducted using life cycle assessment (LCA) considering a thorough inventory dataset; (2) The economic assessment results are analyzed by the life cycle cost (LCC) method; and (3) Social life cycle assessment (SLCA) is conducted using the analytic hierarchy process (AHP) method, in which three main stakeholders “public and local community”, “workers and employees”, and “treated wastewater and sludge consumers” are considered. Finally, to prioritize scenarios, the results of LCA, LCC, and SLCA for every scenario are aggregated to account for the sustainability score using the AHP. The results of applying the proposed method to a real case study show that scenarios leading to less reduction in wastewater production are more sustainable options as they represent better performance regarding economic and social aspects. The proposed framework provides a better insight into the integrated sustainability analysis of urban water infrastructures. In addition, it can be used as a guideline for exploring the effects of WDMPs on wastewater systems in different study areas.

Suggested Citation

  • Haniye Safarpour & Massoud Tabesh & Seyyed Ahmadreza Shahangian & Mohsen Hajibabaei & Robert Sitzenfrei, 2022. "Life Cycle Sustainability Assessment of Wastewater Systems under Applying Water Demand Management Policies," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7736-:d:847278
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas L. Saaty & Luis G. Vargas, 2012. "The Seven Pillars of the Analytic Hierarchy Process," International Series in Operations Research & Management Science, in: Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, edition 2, chapter 0, pages 23-40, Springer.
    2. Józef Ober & Janusz Karwot & Serhii Rusakov, 2022. "Tap Water Quality and Habits of Its Use: A Comparative Analysis in Poland and Ukraine," Energies, MDPI, vol. 15(3), pages 1-29, January.
    3. Matthias Finkbeiner & Erwin M. Schau & Annekatrin Lehmann & Marzia Traverso, 2010. "Towards Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 2(10), pages 1-14, October.
    4. Atefeh Dadvar & Krushna Mahapatra & Jörgen Forss, 2021. "Water Use Behavior in a Multicultural Urban Area in Sweden," Sustainability, MDPI, vol. 13(15), pages 1-15, August.
    5. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    6. Thomas L. Saaty & Luis G. Vargas, 2012. "Models, Methods, Concepts & Applications of the Analytic Hierarchy Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-3597-6, March.
    7. Shyama Ratnasiri & Clevo Wilson & Wasantha Athukorala & Maria A. Garcia-Valiñas & Benno Torgler & Robert Gifford, 2018. "Effectiveness of two pricing structures on urban water use and conservation: a quasi-experimental investigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(3), pages 547-560, July.
    8. Haniye Safarpour & Massoud Tabesh & Seyyed Ahmadreza Shahangian, 2022. "Environmental Assessment of a Wastewater System under Water demand management policies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2061-2077, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabina Kordana-Obuch & Mariusz Starzec & Michał Wojtoń & Daniel Słyś, 2023. "Greywater as a Future Sustainable Energy and Water Source: Bibliometric Mapping of Current Knowledge and Strategies," Energies, MDPI, vol. 16(2), pages 1-34, January.
    2. Nasiri, Amir Reza & Shahangian, Seyyed Ahmadreza & Kerachian, Reza & Zobeidi, Tahereh, 2024. "Exploring socio-psychological factors affecting farmers' intention to choose a low-water-demand cropping pattern for water resources conservation: Application of the health belief model," Agricultural Water Management, Elsevier, vol. 295(C).
    3. Zhangjun Liu & Jingwen Zhang & Tianfu Wen & Jingqing Cheng, 2022. "Uncertainty Quantification of Rainfall-runoff Simulations Using the Copula-based Bayesian Processor: Impacts of Seasonality, Copula Selection and Correlation Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4981-4993, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satheeskumar Navaratnam, 2022. "Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    2. B. Senakumari Arunnima & Dharmaseelan Bijulal & R. Sudhir Kumar, 2023. "Open Innovation Intellectual Property Risk Maturity Model: An Approach to Measure Intellectual Property Risks of Software Firms Engaged in Open Innovation," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    3. Klaus D. Goepel, 2019. "Comparison of Judgment Scales of the Analytical Hierarchy Process — A New Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 445-463, March.
    4. Tamer F. Abdelmaguid & Waleed Elrashidy, 2019. "Halting decisions for gas pipeline construction projects using AHP: a case study," Operational Research, Springer, vol. 19(1), pages 179-199, March.
    5. You Jin Kwon & Dong Kun Lee & You Ha Kwon, 2020. "Is Sensible Heat Flux Useful for the Assessment of Thermal Vulnerability in Seoul (Korea)?," IJERPH, MDPI, vol. 17(3), pages 1-26, February.
    6. Joanna Koszela-Kulinska & Rafal Michalski, 2015. "The effects of the anthropological race, gender and location of verbal-pictorial stimuli on the usability of visual information conveyance," WORking papers in Management Science (WORMS) WORMS/15/01, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    7. Anna Maria Kowalczyk & Szymon Czyża, 2022. "Optimising Photovoltaic Farm Location Using a Capabilities Matrix and GIS," Energies, MDPI, vol. 15(18), pages 1-32, September.
    8. Huicong Jia & Donghua Pan, 2017. "Tornado disaster impacts and management: learning from the 2016 tornado catastrophe in Jiangsu Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 457-471, October.
    9. M. Shafi Bhat & Amir Ali Khan & Mohmad Akbar & Sumira Mir, 2023. "Disaster-development interface and its impact on emerging vulnerability scenario in Ladakh region of northwestern Himalayas," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(2), pages 253-270, June.
    10. Kamran Khan & Katarzyna Szopik Depczyńska & Izabela Dembińska & Giuseppe Ioppolo, 2022. "Most Relevant Sustainability Criteria for Urban Infrastructure Projects—AHP Analysis for the Gulf States," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    11. Hubert Hirwa & Qiuying Zhang & Yunfeng Qiao & Yu Peng & Peifang Leng & Chao Tian & Sayidjakhon Khasanov & Fadong Li & Alphonse Kayiranga & Fabien Muhirwa & Auguste Cesar Itangishaka & Gabriel Habiyare, 2021. "Insights on Water and Climate Change in the Greater Horn of Africa: Connecting Virtual Water and Water-Energy-Food-Biodiversity-Health Nexus," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    12. Parvaneh Sobhani & Hassan Esmaeilzadeh & Isabelle D. Wolf & Marina Viorela Marcu & Michael Lück & Seyed Mohammad Moein Sadeghi, 2023. "Strategies to Manage Ecotourism Sustainably: Insights from a SWOT-ANP Analysis and IUCN Guidelines," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    13. Mustapha Ikirri & Farid Faik & Fatima Zahra Echogdali & Isabel Margarida Horta Ribeiro Antunes & Mohamed Abioui & Kamal Abdelrahman & Mohammed S. Fnais & Abderrahmane Wanaim & Mouna Id-Belqas & Said B, 2022. "Flood Hazard Index Application in Arid Catchments: Case of the Taguenit Wadi Watershed, Lakhssas, Morocco," Land, MDPI, vol. 11(8), pages 1-20, July.
    14. Mikel Zubizarreta & Jaione Ganzarain & Jesús Cuadrado & Rafael Lizarralde, 2020. "Evaluating Disruptive Innovation Project Management Capabilities," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    15. Eduardo Bassolino & Maria Cerreta, 2021. "Climate Adaptive Design Index for the Built Environment (CADI-BE): An Assessment System of the Adaptive Capacity to Urban Temperatures Increase," Energies, MDPI, vol. 14(15), pages 1-35, July.
    16. Subhasis Das & Biswajeet Pradhan & Pravat Kumar Shit & Abdullah M. Alamri, 2020. "Assessment of Wetland Ecosystem Health Using the Pressure–State–Response (PSR) Model: A Case Study of Mursidabad District of West Bengal (India)," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    17. Morteza Alaeddini & Masoud Mir-Amini, 2020. "Integrating COBIT with a hybrid group decision-making approach for a business-aligned IT roadmap formulation," Information Technology and Management, Springer, vol. 21(2), pages 63-94, June.
    18. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    19. Martina Artmann, 2013. "Response-Efficiency-Assessment: A Conceptual Framework For Rating Policy'S Efficiency To Meet Sustainable Development On The Example Of Soil Sealing Management," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-33.
    20. Maryati, Sri & Firman, Tommy & Humaira, An Nisaa Siti, 2022. "A sustainability assessment of decentralized water supply systems in Bandung City, Indonesia," Utilities Policy, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7736-:d:847278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.