IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v11y2022i2p16-d738276.html
   My bibliography  Save this article

Financial and Social Factors Influencing the Use of Unconventional Water Systems in Single-Family Houses in Eight European Countries

Author

Listed:
  • Agnieszka Stec

    (Department of Infrastructure and Water Management, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland)

  • Daniel Słyś

    (Department of Infrastructure and Water Management, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland)

Abstract

A modern model of water management should take into account, first of all, its responsible consumption of both tap water and water from unconventional sources. With this in mind, a study was conducted to determine the financial efficiency of rainwater harvesting systems (RWHSs) and greywater recycling systems (GWRSs) in residential buildings located in eight European countries. At the first stage, volumetric reliability was determined for different tank capacities for actual precipitation data. An economic analysis was carried out for six variants in which rainwater and greywater were used in various combinations for toilet flushing, washing, and garden watering. The implementation of alternative water systems was found to be financially unprofitable in four cities: Warsaw, Bratislava, Budapest, and Stockholm. For these cities, the variant with the lowest life cycle cost (LCC) level was always Variant 0, with conventional installations. The opposite situation was observed in the other four locations (Lisbon, Madrid, Rome, and Prague), where Variant 0 was not found to be financially profitable for any of the calculation cases analyzed. Additionally, a survey was conducted to determine the effect of social aspects, which is often the greatest barrier to the implementation of new or unknown technologies. In most of the countries surveyed, rainwater is more acceptable to society as an alternative water source than greywater. For hygiene reasons, the use of these two systems for washing clothes was of greatest concern.

Suggested Citation

  • Agnieszka Stec & Daniel Słyś, 2022. "Financial and Social Factors Influencing the Use of Unconventional Water Systems in Single-Family Houses in Eight European Countries," Resources, MDPI, vol. 11(2), pages 1-25, January.
  • Handle: RePEc:gam:jresou:v:11:y:2022:i:2:p:16-:d:738276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/11/2/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/11/2/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palla, A. & Gnecco, I. & Lanza, L.G. & La Barbera, P., 2012. "Performance analysis of domestic rainwater harvesting systems under various European climate zones," Resources, Conservation & Recycling, Elsevier, vol. 62(C), pages 71-80.
    2. Garcia-Cuerva, Laura & Berglund, Emily Z. & Binder, Andrew R., 2016. "Public perceptions of water shortages, conservation behaviors, and support for water reuse in the U.S," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 106-115.
    3. Morales-Pinzón, Tito & Lurueña, Rodrigo & Rieradevall, Joan & Gasol, Carles M. & Gabarrell, Xavier, 2012. "Financial feasibility and environmental analysis of potential rainwater harvesting systems: A case study in Spain," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 130-140.
    4. Sabina Kordana-Obuch & Mariusz Starzec & Daniel Słyś, 2021. "Assessment of the Feasibility of Implementing Shower Heat Exchangers in Residential Buildings Based on Users’ Energy Saving Preferences," Energies, MDPI, vol. 14(17), pages 1-30, September.
    5. Jacopo Gaspari & Ernesto Antonini & Lia Marchi & Vincenzo Vodola, 2021. "Energy Transition at Home: A Survey on the Data and Practices That Lead to a Change in Household Energy Behavior," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    6. Moreira Neto, Ronan Fernandes & Calijuri, Maria Lúcia & Carvalho, Isabella de Castro & Santiago, Aníbal da Fonseca, 2012. "Rainwater treatment in airports using slow sand filtration followed by chlorination: Efficiency and costs," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 124-129.
    7. Shahryar Ershad Sarabi & Qi Han & A. Georges L. Romme & Bauke de Vries & Laura Wendling, 2019. "Key Enablers of and Barriers to the Uptake and Implementation of Nature-Based Solutions in Urban Settings: A Review," Resources, MDPI, vol. 8(3), pages 1-20, June.
    8. Daniel Słyś & Agnieszka Stec, 2020. "Centralized or Decentralized Rainwater Harvesting Systems: A Case Study," Resources, MDPI, vol. 9(1), pages 1-18, January.
    9. Ghisi, Enedir & Tavares, Davi da Fonseca & Rocha, Vinicius Luis, 2009. "Rainwater harvesting in petrol stations in Brasília: Potential for potable water savings and investment feasibility analysis," Resources, Conservation & Recycling, Elsevier, vol. 54(2), pages 79-85.
    10. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    11. Imteaz, Monzur Alam & Adeboye, Omotayo B. & Rayburg, Scott & Shanableh, Abdallah, 2012. "Rainwater harvesting potential for southwest Nigeria using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 62(C), pages 51-55.
    12. Rahman, Ataur & Keane, Joseph & Imteaz, Monzur Alam, 2012. "Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 16-21.
    13. Sabina Kordana-Obuch & Mariusz Starzec, 2020. "Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates," Resources, MDPI, vol. 9(9), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zlati, Monica Laura & Antohi, Valentin-Marian & Ionescu, Romeo-Victor & Iticescu, Catalina & Georgescu, Lucian Puiu, 2024. "Quantyfing the impact of the water security index on socio-economic development in EU27," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    2. Sabina Kordana-Obuch & Mariusz Starzec & Michał Wojtoń & Daniel Słyś, 2023. "Greywater as a Future Sustainable Energy and Water Source: Bibliometric Mapping of Current Knowledge and Strategies," Energies, MDPI, vol. 16(2), pages 1-34, January.
    3. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva Vieira, A. & Weeber, M. & Ghisi, E., 2013. "Self-cleaning filtration: A novel concept for rainwater harvesting systems," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 67-73.
    2. Imteaz, Monzur Alam & Ahsan, Amimul & Shanableh, Abdallah, 2013. "Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 37-43.
    3. Daniel Słyś & Agnieszka Stec, 2020. "Centralized or Decentralized Rainwater Harvesting Systems: A Case Study," Resources, MDPI, vol. 9(1), pages 1-18, January.
    4. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    5. Okoye, Chiemeka Onyeka & Solyalı, Oğuz & Akıntuğ, Bertuğ, 2015. "Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 131-140.
    6. Karim, Md. Rezaul & Bashar, Mohammad Zobair Ibne & Imteaz, Monzur Alam, 2015. "Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 61-67.
    7. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    8. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    9. Rostad, Nathan & Foti, Romano & Montalto, Franco A., 2016. "Harvesting rooftop runoff to flush toilets: Drawing conclusions from four major U.S. cities," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 97-106.
    10. Ghisi, Enedir & Rupp, Ricardo Forgiarini & Triska, Yuri, 2014. "Comparing indicators to rank strategies to save potable water in buildings," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 137-144.
    11. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    12. Moreira Neto, Ronan Fernandes & Carvalho, Isabella de Castro & Calijuri, Maria Lúcia & Santiago, Aníbal da Fonseca, 2012. "Rainwater use in airports: A case study in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 36-43.
    13. Dumit Gómez, Yapur & Teixeira, Luiza Girard, 2017. "Residential rainwater harvesting: Effects of incentive policies and water consumption over economic feasibility," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 56-67.
    14. Geraldi, Matheus Soares & Ghisi, Enedir, 2017. "Influence of the length of rainfall time series on rainwater harvesting systems: A case study in Berlin," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 169-180.
    15. Mariusz Starzec & Józef Dziopak & Daniel Słyś, 2020. "An Analysis of Stormwater Management Variants in Urban Catchments," Resources, MDPI, vol. 9(2), pages 1-17, February.
    16. Santos, C. & Taveira-Pinto, F., 2013. "Analysis of different criteria to size rainwater storage tanks using detailed methods," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 1-6.
    17. Mahmood, Asif & Hossain, Faisal, 2017. "Feasibility of managed domestic rainwater harvesting in South Asian rural areas using remote sensing," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 157-168.
    18. Imteaz, Monzur Alam & Rahman, Ataur & Ahsan, Amimul, 2012. "Reliability analysis of rainwater tanks: A comparison between South-East and Central Melbourne," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 1-7.
    19. Edyta Dudkiewicz & Agnieszka Ludwińska, 2023. "Family Dwelling House Localization in Poland as a Factor Influencing the Economic Effect of Rainwater Harvesting System with Underground Tank," Sustainability, MDPI, vol. 15(13), pages 1-25, July.
    20. Wang, Yutao & Sun, Mingxing & Song, Baimin, 2017. "Public perceptions of and willingness to pay for sponge city initiatives in China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 11-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:11:y:2022:i:2:p:16-:d:738276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.