IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v91y2014icp89-99.html
   My bibliography  Save this article

Rainfall conditions and rainwater harvesting potential in the urban area of Khartoum

Author

Listed:
  • Mahmoud, Wifag Hassan
  • Elagib, Nadir Ahmed
  • Gaese, Hartmut
  • Heinrich, Jürgen

Abstract

Runoff water management is among the inherent challenges which face the sustainability of the development of arid urban centers. These areas are particularly at risk from flooding due to rainfall concentration in few heavy showers. On the other hand, they are susceptible to drought. The capital of Sudan (Khartoum) stands as exemplary for these issues. Hence, this research study aims at investigating the potential of applying rainwater harvesting (RWH) in Khartoum City Center as a potential urban runoff management tool. Rapid urbanization coupled with the extension of impervious surfaces has intensified the heat island in Khartoum. Consequently, increased frequency of heat waves and dust storms during the dry summer and streets flooding during the rainy season have led to environmental, economical, and health problems. The study starts with exposing the rainfall behavior in Khartoum by investigating rainfall variability, number of raindays, distribution of rain over the season, probability of daily rainfall, maximum daily rainfall and deficit/surplus of rain through time. The daily rainfall data show that very strong falls of >30mm occur almost once every wet season. Decreased intra- and inter-annual rainfall surpluses as well as increased rainfall concentration in the month of August have been taking place. The 30-year rainfall variability is calculated at decade interval since 1941. Increasing variability is revealed with 1981–2010 having coefficients of variation of 66.6% for the annual values and 108.8–118.0% for the wettest months (July–September). Under the aforementioned rainfall conditions, this paper then explores the potential of RWH in Khartoum City Center as an option for storm water management since the drainage system covers only 40% of the study area. The potential runoff from the 6.5km2 center area is computed using the United States Natural Resources Conservation Services method (US-NRCS), where a weighted Curve Number (CN) of 94% is found, confirming dominant imperviousness. Rainfall threshold for runoff generation is found to be 3.3mm. A 24,000m3 runoff generated from a 13.1mm rainfall (with 80% probability and one year return period) equals the drainage system capacity. An extreme rainfall of 30mm produces a runoff equivalent to fourfold the drainage capacity. It is suggested that the former and latter volumes mentioned above could be harvested by applying the rational method from 18% and 80% rooftops of the commercial and business district area, respectively. Based on the above results, six potential sites can be chosen for RWH with a total roof catchment area of 39,558m2 and potential rooftop RWH per unit area of 0.033m3. These results reflect the RWH potential for effective urban runoff management and better water resources utilization. RWH would provide an alternative source of water to tackle the drought phenomenon.

Suggested Citation

  • Mahmoud, Wifag Hassan & Elagib, Nadir Ahmed & Gaese, Hartmut & Heinrich, Jürgen, 2014. "Rainfall conditions and rainwater harvesting potential in the urban area of Khartoum," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 89-99.
  • Handle: RePEc:eee:recore:v:91:y:2014:i:c:p:89-99
    DOI: 10.1016/j.resconrec.2014.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914001670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Md. Islam & F. Chou & M. Kabir & C. Liaw, 2010. "Rainwater: A Potential Alternative Source for Scarce Safe Drinking and Arsenic Contaminated Water in Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3987-4008, November.
    2. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.
    3. Mohamed Ibrahim, 2009. "Rainwater Harvesting for Urban Areas: a Success Story from Gadarif City in Central Sudan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2727-2736, October.
    4. Uende Gomes & Léo Heller & João Pena, 2012. "A National Program for Large Scale Rainwater Harvesting: An Individual or Public Responsibility?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2703-2714, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    2. Peterson, Eric Laurentius, 2016. "Transcontinental assessment of secure rainwater harvesting systems across Australia," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 33-47.
    3. Parras, Rafael & de Mendonça, Gislaine Costa & da Costa, Luis Miguel & Rocha, Juan Ricardo & Costa, Renata Cristina Araújo & Valera, Carlos Alberto & Fernandes, Luís Filipe Sanches & Pacheco, Fernando, 2024. "Land use footprints and policies in Brazil," Land Use Policy, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chidozie Charles Nnaji & PraiseGod Chidozie Emenike & Imokhai Theophilus Tenebe, 2017. "An Optimization Approach for Assessing the Reliability of Rainwater Harvesting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 2011-2024, April.
    2. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    3. Zvi Baum & Ruslana Rachel Palatnik & Iddo Kan & Mickey Rapaport-Rom, 2016. "Economic Impacts of Water Scarcity Under Diverse Water Salinities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-22, March.
    4. Dima Nazer & Maarten Siebel & Pieter Van der Zaag & Ziad Mimi & Huub Gijzen, 2010. "A Financial, Environmental and Social Evaluation of Domestic Water Management Options in the West Bank, Palestine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4445-4467, December.
    5. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Zijie Sang & Ge Zhang & Haiqing Wang & Wangyang Zhang & Yuxiu Chen & Mingyang Han & Ke Yang, 2023. "Effective Solutions to Ecological and Water Environment Problems in the Sanjiang Plain: Utilization of Farmland Drainage Resources," Sustainability, MDPI, vol. 15(23), pages 1-14, November.
    7. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    8. Moraetis, D. & Stamati, F.E. & Nikolaidis, N.P. & Kalogerakis, N., 2011. "Olive mill wastewater irrigation of maize: Impacts on soil and groundwater," Agricultural Water Management, Elsevier, vol. 98(7), pages 1125-1132, May.
    9. B. Sarma & A. Sarma & V. Singh, 2013. "Optimal Ecological Management Practices (EMPs) for Minimizing the Impact of Climate Change and Watershed Degradation Due to Urbanization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4069-4082, September.
    10. Wahhaj Ahmed & Ayman Alazazmeh & Muhammad Asif, 2022. "Energy and Water Saving Potential in Commercial Buildings: A Retrofit Case Study," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    11. Palatnik, Ruslana & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy be Beneficial for the Israeli Economy? A Computable General Equilibrium Analysis," Conference papers 331792, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    13. Zeyang Bian & Dan Liu, 2021. "A Comprehensive Review on Types, Methods and Different Regions Related to Water–Energy–Food Nexus," IJERPH, MDPI, vol. 18(16), pages 1-24, August.
    14. Saskia Keesstra & Jeroen Veraart & Jan Verhagen & Saskia Visser & Marit Kragt & Vincent Linderhof & Wilfred Appelman & Jolanda van den Berg & Ayodeji Deolu-Ajayi & Annemarie Groot, 2023. "Nature-Based Solutions as Building Blocks for the Transition towards Sustainable Climate-Resilient Food Systems," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    15. Lúcio Proença & Enedir Ghisi, 2013. "Assessment of Potable Water Savings in Office Buildings Considering Embodied Energy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 581-599, January.
    16. Gabriel Yoshino & Lindemberg Fernandes & Júnior Ishihara & Adnilson Silva, 2014. "Use of rainwater for non-potable purposes in the Amazon," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(2), pages 431-442, April.
    17. Dagnachew Adugna & Marina Bergen Jensen & Brook Lemma & Geremew Sahilu Gebrie, 2018. "Assessing the Potential for Rooftop Rainwater Harvesting from Large Public Institutions," IJERPH, MDPI, vol. 15(2), pages 1-11, February.
    18. Roson, Roberto & Sartori, Martina, 2013. "Trade-offs in water policy: System-wide implications of changing water availability and agricultural productivity in the Mediterranean economies by 2050," Conference papers 332416, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Houessionon, P. & Fonta, W. M. & Bossa, A. Y. & Sanfo, S. & Thiombiano, N. & Zahonogo, P. & Yameogo, T. B. & Balana, Bedru, "undated". "Economic valuation of ecosystem services from small-scale agricultural management interventions in Burkina Faso: a discrete choice experiment approach," Papers published in Journals (Open Access) H048370, International Water Management Institute.
    20. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:91:y:2014:i:c:p:89-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.