IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10687-d1188510.html
   My bibliography  Save this article

Family Dwelling House Localization in Poland as a Factor Influencing the Economic Effect of Rainwater Harvesting System with Underground Tank

Author

Listed:
  • Edyta Dudkiewicz

    (Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland)

  • Agnieszka Ludwińska

    (Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland)

Abstract

Considering water resources, Poland ranks among the last in Europe. By using rainwater for sanitary purposes, drinking water is saved. This article presents the results of the economic analysis of rainwater utilization systems, based on a novel view that takes into account factors related to the location of the family detached house in the country, such as average annual rainfall and water and electricity prices. Two cases of rainwater management systems (domestic-garden and garden) were analyzed in six locations, while considering the diversity of precipitation in Poland in two variants, depending on the material of the tank, with two options of traditional electrical installation or photovoltaic panels. The evaluation of the profitability of the investment was carried out on the basis of indicators: NPV, LCC, and SPBT. The results of the analyses of all variants give the conclusion that, to achieve the greatest financial benefits, it is crucial that the building’s rainwater demand is fully met by rainfall, the unit price of water is significantly higher than the unit price of electricity, operating costs are as low as possible through the use of renewable energy sources, and subsidies are a significant percentage of the investment.

Suggested Citation

  • Edyta Dudkiewicz & Agnieszka Ludwińska, 2023. "Family Dwelling House Localization in Poland as a Factor Influencing the Economic Effect of Rainwater Harvesting System with Underground Tank," Sustainability, MDPI, vol. 15(13), pages 1-25, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10687-:d:1188510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sabina Kordana-Obuch & Mariusz Starzec & Daniel Słyś, 2021. "Assessment of the Feasibility of Implementing Shower Heat Exchangers in Residential Buildings Based on Users’ Energy Saving Preferences," Energies, MDPI, vol. 14(17), pages 1-30, September.
    2. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    3. Mariusz Starzec & Sabina Kordana-Obuch & Daniel Słyś, 2023. "Assessment of the Feasibility of Implementing a Flash Flood Early Warning System in a Small Catchment Area," Sustainability, MDPI, vol. 15(10), pages 1-43, May.
    4. Daniel Słyś & Agnieszka Stec, 2020. "Centralized or Decentralized Rainwater Harvesting Systems: A Case Study," Resources, MDPI, vol. 9(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabina Kordana-Obuch & Mariusz Starzec & Beata Piotrowska, 2024. "Harnessing Artificial Neural Networks for Financial Analysis of Investments in a Shower Heat Exchanger," Energies, MDPI, vol. 17(14), pages 1-24, July.
    2. Mariusz Starzec & Sabina Kordana-Obuch & Beata Piotrowska, 2024. "Evaluation of the Suitability of Using Artificial Neural Networks in Assessing the Effectiveness of Greywater Heat Exchangers," Sustainability, MDPI, vol. 16(7), pages 1-26, March.
    3. Bożena Gajdzik & Magdalena Jaciow & Kinga Hoffmann-Burdzińska & Robert Wolny & Radosław Wolniak & Wiesław Wes Grebski, 2024. "Impact of Economic Awareness on Sustainable Energy Consumption: Results of Research in a Segment of Polish Households," Energies, MDPI, vol. 17(11), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beata Piotrowska & Daniel Słyś, 2023. "Analysis of the Life Cycle Cost of a Heat Recovery System from Greywater Using a Vertical “Tube-in-Tube” Heat Exchanger: Case Study of Poland," Resources, MDPI, vol. 12(9), pages 1-17, August.
    2. Beata Piotrowska & Daniel Słyś, 2022. "Comprehensive Analysis of the State of Technology in the Field of Waste Heat Recovery from Grey Water," Energies, MDPI, vol. 16(1), pages 1-20, December.
    3. Agnieszka Stec & Daniel Słyś, 2022. "Financial and Social Factors Influencing the Use of Unconventional Water Systems in Single-Family Houses in Eight European Countries," Resources, MDPI, vol. 11(2), pages 1-25, January.
    4. Anna Musz-Pomorska & Marcin K. Widomski & Justyna Gołębiowska, 2024. "Financial Aspects of Sustainable Rainwater Management in Small-Scale Urban Housing Communities," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    5. Kamil Pochwat, 2022. "Assessment of Rainwater Retention Efficiency in Urban Drainage Systems—Model Studies," Resources, MDPI, vol. 11(2), pages 1-23, January.
    6. Sabina Kordana-Obuch & Mariusz Starzec & Michał Wojtoń & Daniel Słyś, 2023. "Greywater as a Future Sustainable Energy and Water Source: Bibliometric Mapping of Current Knowledge and Strategies," Energies, MDPI, vol. 16(2), pages 1-34, January.
    7. Mariusz Starzec & Sabina Kordana-Obuch, 2024. "Evaluating the Utility of Selected Machine Learning Models for Predicting Stormwater Levels in Small Streams," Sustainability, MDPI, vol. 16(2), pages 1-29, January.
    8. Łukasz Amanowicz, 2021. "Peak Power of Heat Source for Domestic Hot Water Preparation (DHW) for Residential Estate in Poland as a Representative Case Study for the Climate of Central Europe," Energies, MDPI, vol. 14(23), pages 1-15, December.
    9. Dumit Gómez, Yapur & Teixeira, Luiza Girard, 2017. "Residential rainwater harvesting: Effects of incentive policies and water consumption over economic feasibility," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 56-67.
    10. Anna Lempart-Rapacewicz & Julia Zakharova & Edyta Kudlek, 2023. "Rainwater Quality Analysis for Its Potential Recovery: A Case Study on Its Usage for Swimming Pools in Poland," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    11. Joško Trošelj & Han Soo Lee & Lena Hobohm, 2023. "Enhancing a Real-Time Flash Flood Predictive Accuracy Approach for the Development of Early Warning Systems: Hydrological Ensemble Hindcasts and Parameterizations," Sustainability, MDPI, vol. 15(18), pages 1-33, September.
    12. Krzysztof Rajski & Sebastian Englart & Ali Sohani, 2024. "Analysis of Greywater Recovery Systems in European Single-Family Buildings: Economic and Environmental Impacts," Sustainability, MDPI, vol. 16(12), pages 1-16, June.
    13. Damian Maciorowski & Maciej Jan Spychala & Danuta Miedzinska, 2024. "An Experimental and Numerical Investigation of a Heat Exchanger for Showers," Energies, MDPI, vol. 17(15), pages 1-16, July.
    14. Haniye Safarpour & Massoud Tabesh & Seyyed Ahmadreza Shahangian & Mohsen Hajibabaei & Robert Sitzenfrei, 2022. "Life Cycle Sustainability Assessment of Wastewater Systems under Applying Water Demand Management Policies," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    15. Katarzyna Ratajczak & Łukasz Amanowicz & Katarzyna Pałaszyńska & Filip Pawlak & Joanna Sinacka, 2023. "Recent Achievements in Research on Thermal Comfort and Ventilation in the Aspect of Providing People with Appropriate Conditions in Different Types of Buildings—Semi-Systematic Review," Energies, MDPI, vol. 16(17), pages 1-55, August.
    16. Sabina Kordana-Obuch & Mariusz Starzec & Beata Piotrowska, 2024. "Harnessing Artificial Neural Networks for Financial Analysis of Investments in a Shower Heat Exchanger," Energies, MDPI, vol. 17(14), pages 1-24, July.
    17. Mariusz Starzec & Józef Dziopak & Daniel Słyś, 2020. "An Analysis of Stormwater Management Variants in Urban Catchments," Resources, MDPI, vol. 9(2), pages 1-17, February.
    18. Sabina Kordana-Obuch & Mariusz Starzec, 2020. "Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates," Resources, MDPI, vol. 9(9), pages 1-20, September.
    19. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik, 2023. "Water System Safety Analysis Model," Energies, MDPI, vol. 16(6), pages 1-18, March.
    20. Mariusz Starzec & Józef Dziopak, 2020. "A Case Study of the Retention Efficiency of a Traditional and Innovative Drainage System," Resources, MDPI, vol. 9(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10687-:d:1188510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.