Behavioral data-driven analysis with Bayesian method for risk management of financial services
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijpe.2020.107737
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Naderkhani, Farnoosh & Makis, Viliam, 2016. "Economic design of multivariate Bayesian control chart with two sampling intervals," International Journal of Production Economics, Elsevier, vol. 174(C), pages 29-42.
- Dilip Abreu & Markus K. Brunnermeier, 2003.
"Bubbles and Crashes,"
Econometrica, Econometric Society, vol. 71(1), pages 173-204, January.
- Markus K Brunnermeier, 2002. "Bubbles and Crashes," FMG Discussion Papers dp401, Financial Markets Group.
- Abreu, Dilip & Brunnermeier, Markus K., 2002. "Bubbles and crashes," LSE Research Online Documents on Economics 24905, London School of Economics and Political Science, LSE Library.
- Lei Wu & Qingbin Meng & Julio C. Velazquez, 2015. "The role of multivariate skew-Student density in the estimation of stock market crashes," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1144-1160, November.
- Sarkis, Joseph & Dhavale, Dileep G., 2015. "Supplier selection for sustainable operations: A triple-bottom-line approach using a Bayesian framework," International Journal of Production Economics, Elsevier, vol. 166(C), pages 177-191.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Guo, Xu & McAleer, Michael & Wong, Wing-Keung & Zhu, Lixing, 2017.
"A Bayesian approach to excess volatility, short-term underreaction and long-term overreaction during financial crises,"
The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 346-358.
- Guo, X. & McAleer, M.J. & Wong, W.-K. & Zhu, L., 2016. "A Bayesian Approach to Excess Volatility, Short-term Underreaction and Long-term Overreaction during Financial Crises," Econometric Institute Research Papers EI2016-01, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Xu Guo & Michael McAleer & Wing-Keung Wong & Lixing Zhu, 2016. "A Bayesian Approach to Excess Volatility, Short-term Underreaction and Long-term Overreaction During Financial Crises," Tinbergen Institute Discussion Papers 16-003/III, Tinbergen Institute.
- P. Richard Hahn & Ryan Martin & Stephen G. Walker, 2018. "On Recursive Bayesian Predictive Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1085-1093, July.
- Farias, Rafael B.A. & Montoril, Michel H. & Andrade, José A.A., 2016. "Bayesian inference for extreme quantiles of heavy tailed distributions," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 103-107.
- Sun, Edward W. & Meinl, Thomas, 2012. "A new wavelet-based denoising algorithm for high-frequency financial data mining," European Journal of Operational Research, Elsevier, vol. 217(3), pages 589-599.
- Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
- Kollo, Tõnu, 2008. "Multivariate skewness and kurtosis measures with an application in ICA," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2328-2338, November.
- Qazi, Abroon & Dickson, Alex & Quigley, John & Gaudenzi, Barbara, 2018. "Supply chain risk network management: A Bayesian belief network and expected utility based approach for managing supply chain risks," International Journal of Production Economics, Elsevier, vol. 196(C), pages 24-42.
- Lohithaksha M. Maiyar & SangJe Cho & Manoj Kumar Tiwari & Klaus-Dieter Thoben & Dimitris Kiritsis, 2019. "Optimising online review inspired product attribute classification using the self-learning particle swarm-based Bayesian learning approach," International Journal of Production Research, Taylor & Francis Journals, vol. 57(10), pages 3099-3120, May.
- Zhu, Dongming & Galbraith, John W., 2010.
"A generalized asymmetric Student-t distribution with application to financial econometrics,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
- Dongming Zhu & John W. Galbraith, 2009. "A Generalized Asymmetric Student-t Distribution with Application to Financial Econometrics," CIRANO Working Papers 2009s-13, CIRANO.
- John Galbraith & Dongming Zhu, 2009. "A Generalized Asymmetric Student-T Distribution With Application To Financial Econometrics," Departmental Working Papers 2009-02, McGill University, Department of Economics.
- Robert F. Engle & Simone Manganelli, 2004.
"CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
- Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
- Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
- Genton, Marc G. & He, Li & Liu, Xiangwei, 2001. "Moments of skew-normal random vectors and their quadratic forms," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 319-325, February.
- Jose A. Lopez, 1999.
"Methods for evaluating value-at-risk estimates,"
Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
- Jose A. Lopez, 1998. "Methods for evaluating value-at-risk estimates," Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Oct), pages 119-124.
- Jose A. Lopez, 1998. "Methods for evaluating value-at-risk estimates," Research Paper 9802, Federal Reserve Bank of New York.
- Stoyan Stoyanov & Svetlozar Rachev & Frank Fabozzi, 2013. "Sensitivity of portfolio VaR and CVaR to portfolio return characteristics," Annals of Operations Research, Springer, vol. 205(1), pages 169-187, May.
- Mawuli Segnon & Mark Trede, 2018.
"Forecasting market risk of portfolios: copula-Markov switching multifractal approach,"
The European Journal of Finance, Taylor & Francis Journals, vol. 24(14), pages 1123-1143, September.
- Mawuli Segnon & Mark Trede, 2017. "Forecasting Market Risk of Portfolios: Copula-Markov Switching Multifractal Approach," CQE Working Papers 6617, Center for Quantitative Economics (CQE), University of Muenster.
- Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
- Matsushima, Hitoshi, 2013.
"Behavioral aspects of arbitrageurs in timing games of bubbles and crashes,"
Journal of Economic Theory, Elsevier, vol. 148(2), pages 858-870.
- Hitoshi Matsushima, 2009. "Behavioral Aspects of Arbitrageurs in Timing Games of Bubbles and Crashes," CIRJE F-Series CIRJE-F-606, CIRJE, Faculty of Economics, University of Tokyo.
- Hitoshi Matsushima, 2012. "Behavioral Aspects of Arbitrageurs in Timing Games of Bubbles and Crashes," CARF F-Series CARF-F-285, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Hitoshi Matsushima, 2009. "Behavioral Aspects of Arbitrageurs in Timing Games of Bubbles and Crashes," CARF F-Series CARF-F-144, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Hitoshi Matsushima, 2012. "Behavioral Aspects of Arbitrageurs in Timing Games of Bubbles and Crashes," CIRJE F-Series CIRJE-F-857, CIRJE, Faculty of Economics, University of Tokyo.
- Yau, Sheena & Kwon, Roy H. & Scott Rogers, J. & Wu, Desheng, 2011. "Financial and operational decisions in the electricity sector: Contract portfolio optimization with the conditional value-at-risk criterion," International Journal of Production Economics, Elsevier, vol. 134(1), pages 67-77, November.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Cathy W.S. Chen & Richard Gerlach & Edward M. H. Lin & W. C. W. Lee, 2012.
"Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(8), pages 661-687, December.
- Chen, Cathy W.S. & Gerlach, Richard & Lee, Wcw & Lin, Edward M.H., 2011. "Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis," Working Papers 03/2011, University of Sydney Business School, Discipline of Business Analytics.
- Cairns, Andrew J. G., 2000. "A discussion of parameter and model uncertainty in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 313-330, December.
- So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012.
"Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics,"
Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
- Chun, So Yeon & Shapiro, Alexander & Uryasev, Stan, 2011. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," MPRA Paper 30132, University Library of Munich, Germany.
- Oliva, Fábio Lotti, 2016. "A maturity model for enterprise risk management," International Journal of Production Economics, Elsevier, vol. 173(C), pages 66-79.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Engle, Robert F & Ng, Victor K, 1993.
"Measuring and Testing the Impact of News on Volatility,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
- Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
- Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
- Zhou, Chongwen & Chinnam, Ratna Babu & Dalkiran, Evrim & Korostelev, Alexander, 2017. "Bayesian approach to hazard rate models for early detection of warranty and reliability problems using upstream supply chain information," International Journal of Production Economics, Elsevier, vol. 193(C), pages 316-331.
- Koenig, Matthias & Meissner, Joern, 2015.
"Value-at-risk optimal policies for revenue management problems,"
International Journal of Production Economics, Elsevier, vol. 166(C), pages 11-19.
- Matthias Koenig & Joern Meissner, 2010. "Value-At-Risk Optimal Policies for Revenue Management Problems," Working Papers MRG/0018, Department of Management Science, Lancaster University, revised Dec 2014.
- Sun, Edward W. & Chen, Yi-Ting & Yu, Min-Teh, 2015. "Generalized optimal wavelet decomposing algorithm for big financial data," International Journal of Production Economics, Elsevier, vol. 165(C), pages 194-214.
- R. P. Yatigammana & J. S. K. Chan & R. H. Gerlach, 2019. "Forecasting trade durations via ACD models with mixture distributions," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 2051-2067, December.
- Ritesh Ojha & Abhijeet Ghadge & Manoj Kumar Tiwari & Umit S. Bititci, 2018. "Bayesian network modelling for supply chain risk propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5795-5819, September.
- Chen, Yi-Ting & Sun, Edward W. & Lin, Yi-Bing, 2020. "Merging anomalous data usage in wireless mobile telecommunications: Business analytics with a strategy-focused data-driven approach for sustainability," European Journal of Operational Research, Elsevier, vol. 281(3), pages 687-705.
- Fröhlich, Andreas & Weng, Annegret, 2018. "Parameter uncertainty and reserve risk under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 130-141.
- Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012.
"Skew mixture models for loss distributions: A Bayesian approach,"
Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
- Bernardi, Mauro & Maruotti, Antonello & Lea, Petrella, 2012. "Skew mixture models for loss distributions: a Bayesian approach," MPRA Paper 39826, University Library of Munich, Germany.
- Boutselis, Petros & McNaught, Ken, 2019. "Using Bayesian Networks to forecast spares demand from equipment failures in a changing service logistics context," International Journal of Production Economics, Elsevier, vol. 209(C), pages 325-333.
- Hosseini, Seyedmohsen & Barker, Kash, 2016. "A Bayesian network model for resilience-based supplier selection," International Journal of Production Economics, Elsevier, vol. 180(C), pages 68-87.
- Lin, Edward M.H. & Chen, Cathy W.S. & Gerlach, Richard, 2012. "Forecasting volatility with asymmetric smooth transition dynamic range models," International Journal of Forecasting, Elsevier, vol. 28(2), pages 384-399.
- Hamilton, James D, 1991. "A Quasi-Bayesian Approach to Estimating Parameters for Mixtures of Normal Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 27-39, January.
- Wei Sun & Svetlozar Rachev & Frank J. Fabozzi, 2009. "A New Approach for Using Lévy Processes for Determining High‐Frequency Value‐at‐Risk Predictions," European Financial Management, European Financial Management Association, vol. 15(2), pages 340-361, March.
- Barrieu, Pauline & Scandolo, Giacomo, 2015.
"Assessing financial model risk,"
European Journal of Operational Research, Elsevier, vol. 242(2), pages 546-556.
- Pauline Barrieu & Giacomo Scandolo, 2013. "Assessing Financial Model Risk," Papers 1307.0684, arXiv.org, revised Jul 2013.
- Hosseini, Seyedmohsen & Morshedlou, Nazanin & Ivanov, Dmitry & Sarder, M.D. & Barker, Kash & Khaled, Abdullah Al, 2019. "Resilient supplier selection and optimal order allocation under disruption risks," International Journal of Production Economics, Elsevier, vol. 213(C), pages 124-137.
- Liseo, Brunero & Parisi, Antonio, 2013. "Bayesian inference for the multivariate skew-normal model: A population Monte Carlo approach," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 125-138.
- Steven Kou & Cindy Yu & Haowen Zhong, 2017. "Jumps in Equity Index Returns Before and During the Recent Financial Crisis: A Bayesian Analysis," Management Science, INFORMS, vol. 63(4), pages 988-1010, April.
- Chen, Cathy W.S. & So, Mike K.P., 2006. "On a threshold heteroscedastic model," International Journal of Forecasting, Elsevier, vol. 22(1), pages 73-89.
- Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiaming Liu & Xuemei Zhang & Haitao Xiong, 2024. "Credit risk prediction based on causal machine learning: Bayesian network learning, default inference, and interpretation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1625-1660, August.
- Cao, Ting & Cook, Wade D. & Kristal, M. Murat, 2022. "Has the technological investment been worth it? Assessing the aggregate efficiency of non-homogeneous bank holding companies in the digital age," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
- Chen, Yi-Ting & Sun, Edward W. & Chang, Ming-Feng & Lin, Yi-Bing, 2021. "Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0," International Journal of Production Economics, Elsevier, vol. 238(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Makushkin, Mikhail & Lapshin, Victor, 2020. "Modelling tail dependencies between Russian and foreign stock markets: Application for market risk valuation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 57, pages 30-52.
- Edward W. Sun & Yu-Jen Wang & Min-Teh Yu, 2018. "Integrated Portfolio Risk Measure: Estimation and Asymptotics of Multivariate Geometric Quantiles," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 627-652, August.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
- Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
- Lyu, Yongjian & Wang, Peng & Wei, Yu & Ke, Rui, 2017. "Forecasting the VaR of crude oil market: Do alternative distributions help?," Energy Economics, Elsevier, vol. 66(C), pages 523-534.
- Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.
- Cathy W.S. Chen & Toshiaki Watanabe, 2019. "Bayesian modeling and forecasting of Value‐at‐Risk via threshold realized volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 747-765, May.
- Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012.
"Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range,"
International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
- Chen, C.W.S. & Gerlach, R. & Hwang, B.B.K. & McAleer, M.J., 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intraday Range," Econometric Institute Research Papers EI 2011-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," KIER Working Papers 775, Kyoto University, Institute of Economic Research.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," Documentos de Trabajo del ICAE 2011-16, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," Working Papers in Economics 11/22, University of Canterbury, Department of Economics and Finance.
- Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
- Trino-Manuel Ñíguez & Javier Perote, 2012. "Forecasting Heavy-Tailed Densities with Positive Edgeworth and Gram-Charlier Expansions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(4), pages 600-627, August.
- CHEN, Cathy W.S. & WENG, Monica M.C. & WATANABE, Toshiaki & 渡部, 渡部, 2015. "Employing Bayesian Forecasting of Value-at-Risk to Determine an Appropriate Model for Risk Management," Discussion paper series HIAS-E-16, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
- Chen, Yi-Hsuan & Tu, Anthony H., 2013. "Estimating hedged portfolio value-at-risk using the conditional copula: An illustration of model risk," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 514-528.
- Seyedmohsen Hosseini & Dmitry Ivanov, 2022. "A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach," Annals of Operations Research, Springer, vol. 319(1), pages 581-607, December.
- Mauro Bernardi & Leopoldo Catania & Lea Petrella, 2014. "Are news important to predict large losses?," Papers 1410.6898, arXiv.org, revised Oct 2014.
- Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017.
"Forecasting Value-at-Risk under Temporal and Portfolio Aggregation,"
Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2015. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Tinbergen Institute Discussion Papers 15-140/III, Tinbergen Institute, revised 19 Apr 2017.
- Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
- Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
- Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
- Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
More about this item
Keywords
Bayesian method; Big data; Business analytics; Decision support system; Financial services; Risk management;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:228:y:2020:i:c:s0925527320301250. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.