Credit risk prediction based on causal machine learning: Bayesian network learning, default inference, and interpretation
Author
Abstract
Suggested Citation
DOI: 10.1002/for.3080
Download full text from publisher
References listed on IDEAS
- Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
- Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
- Min Lin, 2022. "Innovative Risk Early Warning Model under Data Mining Approach in Risk Assessment of Internet Credit Finance," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1443-1464, April.
- Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022.
"Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects,"
European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
- Elena Ivona Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2022. "Machine Learning for Credit Scoring: Improving Logistic Regression with Non Linear Decision Tree Effects," Post-Print hal-03331114, HAL.
- Zhu, Weidong & Zhang, Tianjiao & Wu, Yong & Li, Shaorong & Li, Zhimin, 2022. "Research on optimization of an enterprise financial risk early warning method based on the DS-RF model," International Review of Financial Analysis, Elsevier, vol. 81(C).
- Chee Kian Leong, 2016. "Credit Risk Scoring with Bayesian Network Models," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 423-446, March.
- Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
- Fahmida E. Moula & Chi Guotai & Mohammad Zoynul Abedin, 2017. "Credit default prediction modeling: an application of support vector machine," Risk Management, Palgrave Macmillan, vol. 19(2), pages 158-187, May.
- Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
- Michael Bücker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2022. "Transparency, auditability, and explainability of machine learning models in credit scoring," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(1), pages 70-90, January.
- Truong, Dothang, 2021. "Using causal machine learning for predicting the risk of flight delays in air transportation," Journal of Air Transport Management, Elsevier, vol. 91(C).
- Aiwen Niu & Bingqing Cai & Shousong Cai, 2020. "Big Data Analytics for Complex Credit Risk Assessment of Network Lending Based on SMOTE Algorithm," Complexity, Hindawi, vol. 2020, pages 1-9, September.
- Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Barboza, Flavio & Altman, Edward, 2024. "Predicting financial distress in Latin American companies: A comparative analysis of logistic regression and random forest models," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
- Yuanying Chi & Mingjian Yan & Yuexia Pang & Hongbo Lei, 2022. "Financial Risk Assessment of Photovoltaic Industry Listed Companies Based on Text Mining," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
- Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
- Zhang, Tianjiao & Zhu, Weidong & Wu, Yong & Wu, Zihao & Zhang, Chao & Hu, Xue, 2023. "An explainable financial risk early warning model based on the DS-XGBoost model," Finance Research Letters, Elsevier, vol. 56(C).
- Zhou, Ying & Shen, Long & Ballester, Laura, 2023. "A two-stage credit scoring model based on random forest: Evidence from Chinese small firms," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Mohammad S. Uddin & Guotai Chi & Mazin A. M. Al Janabi & Tabassum Habib, 2022. "Leveraging random forest in micro‐enterprises credit risk modelling for accuracy and interpretability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3713-3729, July.
- Goldmann, Leonie & Crook, Jonathan & Calabrese, Raffaella, 2024. "A new ordinal mixed-data sampling model with an application to corporate credit rating levels," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1111-1126.
- Wang Ying & Igor A. Mayburov & Yulia V. Leontyeva, 2024. "Assessing the Bankruptcy Risks of China's Emerging Port Industries: Modeling and Early Warning," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(3), pages 776-800.
- Kai Ren, 2023. "Study on Intelligent Forecasting of Credit Bond Default Risk," Papers 2305.12142, arXiv.org, revised Jun 2023.
- Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014.
"Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
- Giordani, Paolo & Jacobson, Tor & von Schedvin , Erik & Villani, Mattias, 2011. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Working Paper Series 256, Sveriges Riksbank (Central Bank of Sweden).
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Dan Wang & Zhi Chen & Ionut Florescu, 2021. "A Sparsity Algorithm with Applications to Corporate Credit Rating," Papers 2107.10306, arXiv.org.
- Lauren Stagnol, 2015.
"Designing a corporate bond index on solvency criteria,"
EconomiX Working Papers
2015-39, University of Paris Nanterre, EconomiX.
- Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," Working Papers hal-04141378, HAL.
- Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
- Chiara Pederzoli & Grid Thoma & Costanza Torricelli, 2013. "Modelling Credit Risk for Innovative SMEs: the Role of Innovation Measures," Journal of Financial Services Research, Springer;Western Finance Association, vol. 44(1), pages 111-129, August.
- Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
- Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
- Le, Hong Hanh & Viviani, Jean-Laurent, 2018.
"Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios,"
Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
- Hong Hanh Le & Jean-Laurent Viviani, 2018. "Predicting bank failure: An improvement by implementing machine learning approach on classical financial ratios," Post-Print halshs-01615106, HAL.
- Lillian Cheung & Amnon Levy, 1998.
"An integrative analysis of business bankruptcy in Australia,"
Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 22(2), pages 149-167, June.
- Cheung, L. & Levy, A., 1998. "An Integrative Analysis of Business Bankruptcy in Australia," Economics Working Papers wp98-03, School of Economics, University of Wollongong, NSW, Australia.
- Elizabeth Demers & Philip Joos, 2007. "IPO Failure Risk," Journal of Accounting Research, Wiley Blackwell, vol. 45(2), pages 333-371, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:5:p:1625-1660. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.