IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v213y2019icp124-137.html
   My bibliography  Save this article

Resilient supplier selection and optimal order allocation under disruption risks

Author

Listed:
  • Hosseini, Seyedmohsen
  • Morshedlou, Nazanin
  • Ivanov, Dmitry
  • Sarder, M.D.
  • Barker, Kash
  • Khaled, Abdullah Al

Abstract

Resilient supplier selection is a key strategic decision in the context of the supply chain (SC) disruption management. We offer an efficient solution to the resilient supplier selection and optimal order allocation problem. We first show how to compute the likelihood of disruption scenarios for the supplier selection problem using a probabilistic graphical model. That model can capture (i) a large number of disruptive events with no computational burden, and (ii) the dependencies among disruptive events and their impacts on supplier performance, i.e., the ripple effect. We then propose a stochastic bi-objective mixed integer programming model to support the decision-making in how and when to use both proactive and reactive strategies in supplier selection and order allocation. The outcomes of this research, if utilized properly, can benefit suppliers to find the optimal set of operational decisions (e.g., the optimal level of surplus capacity and restorative capacity) that enhance their resilience capabilities. Finally, the proposed model can be utilized as a decision support tool to assist manufacturers in performance assessment of supplier alternatives when costs and resilience are considered simultaneously, which helps to build up both efficient and resilient SC (i.e., to achieve the SC resilience) to ensure the operations continuity. These outcomes can help SC managers organize their disruption risk mitigation efforts with balancing the efficiency and resilience while focusing on critical suppliers and order (re)-allocation that will have a more significant impact on the performance of the SC when disrupted.

Suggested Citation

  • Hosseini, Seyedmohsen & Morshedlou, Nazanin & Ivanov, Dmitry & Sarder, M.D. & Barker, Kash & Khaled, Abdullah Al, 2019. "Resilient supplier selection and optimal order allocation under disruption risks," International Journal of Production Economics, Elsevier, vol. 213(C), pages 124-137.
  • Handle: RePEc:eee:proeco:v:213:y:2019:i:c:p:124-137
    DOI: 10.1016/j.ijpe.2019.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527319301069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2019.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivanov, Dmitry & Sokolov, Boris, 2013. "Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty," European Journal of Operational Research, Elsevier, vol. 224(2), pages 313-323.
    2. Ivanov, Dmitry & Pavlov, Alexander & Dolgui, Alexandre & Pavlov, Dmitry & Sokolov, Boris, 2016. "Disruption-driven supply chain (re)-planning and performance impact assessment with consideration of pro-active and recovery policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 7-24.
    3. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    4. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2018. "Ripple effect in the supply chain: an analysis and recent literature," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 414-430, January.
    5. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    6. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2017. "An assessment of supply chain disruption mitigation strategies," International Journal of Production Economics, Elsevier, vol. 184(C), pages 210-230.
    7. Brusset, Xavier & Teller, Christoph, 2017. "Supply chain capabilities, risks, and resilience," International Journal of Production Economics, Elsevier, vol. 184(C), pages 59-68.
    8. Ivanov, Dmitry & Pavlov, Alexander & Pavlov, Dmitry & Sokolov, Boris, 2017. "Minimization of disruption-related return flows in the supply chain," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 503-513.
    9. Sawik, Tadeusz, 2013. "Selection of resilient supply portfolio under disruption risks," Omega, Elsevier, vol. 41(2), pages 259-269.
    10. Ho, William & Xu, Xiaowei & Dey, Prasanta K., 2010. "Multi-criteria decision making approaches for supplier evaluation and selection: A literature review," European Journal of Operational Research, Elsevier, vol. 202(1), pages 16-24, April.
    11. Hosseini, Seyedmohsen & Barker, Kash, 2016. "A Bayesian network model for resilience-based supplier selection," International Journal of Production Economics, Elsevier, vol. 180(C), pages 68-87.
    12. Emma Brandon-Jones & Brian Squire & Chad W. Autry & Kenneth J. Petersen, 2014. "A Contingent Resource-Based Perspective of Supply Chain Resilience and Robustness," Journal of Supply Chain Management, Institute for Supply Management, vol. 50(3), pages 55-73, July.
    13. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    14. David Simchi-Levi & William Schmidt & Yehua Wei & Peter Yun Zhang & Keith Combs & Yao Ge & Oleg Gusikhin & Michael Sanders & Don Zhang, 2015. "Identifying Risks and Mitigating Disruptions in the Automotive Supply Chain," Interfaces, INFORMS, vol. 45(5), pages 375-390, October.
    15. Ni, Ni & Howell, Brendan J. & Sharkey, Thomas C., 2018. "Modeling the impact of unmet demand in supply chain resiliency planning," Omega, Elsevier, vol. 81(C), pages 1-16.
    16. Dmitry Ivanov, 2018. "Structural Dynamics and Resilience in Supply Chain Risk Management," International Series in Operations Research and Management Science, Springer, number 978-3-319-69305-7, April.
    17. Chowdhury, Md. Maruf Hossan & Quaddus, Mohammed A., 2015. "A multiple objective optimization based QFD approach for efficient resilient strategies to mitigate supply chain vulnerabilities: The case of garment industry of Bangladesh☆,☆☆☆This manuscript was pro," Omega, Elsevier, vol. 57(PA), pages 5-21.
    18. Boris Sokolov & Dmitry Ivanov & Alexandre Dolgui & Alexander Pavlov, 2016. "Structural quantification of the ripple effect in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 152-169, January.
    19. PrasannaVenkatesan, S. & Goh, M., 2016. "Multi-objective supplier selection and order allocation under disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 124-142.
    20. Torabi, S.A. & Baghersad, M. & Mansouri, S.A., 2015. "Resilient supplier selection and order allocation under operational and disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 22-48.
    21. Chowdhury, Md Maruf H. & Quaddus, Mohammed, 2017. "Supply chain resilience: Conceptualization and scale development using dynamic capability theory," International Journal of Production Economics, Elsevier, vol. 188(C), pages 185-204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    2. Seyedmohsen Hosseini & Dmitry Ivanov, 2022. "A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach," Annals of Operations Research, Springer, vol. 319(1), pages 581-607, December.
    3. Dixit, Vijaya & Verma, Priyanka & Tiwari, Manoj Kumar, 2020. "Assessment of pre and post-disaster supply chain resilience based on network structural parameters with CVaR as a risk measure," International Journal of Production Economics, Elsevier, vol. 227(C).
    4. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    5. Li, Yuhong & Zobel, Christopher W. & Seref, Onur & Chatfield, Dean, 2020. "Network characteristics and supply chain resilience under conditions of risk propagation," International Journal of Production Economics, Elsevier, vol. 223(C).
    6. Dmitry Ivanov & Boris Sokolov, 2019. "Simultaneous structural–operational control of supply chain dynamics and resilience," Annals of Operations Research, Springer, vol. 283(1), pages 1191-1210, December.
    7. Shashi & Piera Centobelli & Roberto Cerchione & Myriam Ertz, 2020. "Managing supply chain resilience to pursue business and environmental strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1215-1246, March.
    8. Li, Yuhong & Zobel, Christopher W., 2020. "Exploring supply chain network resilience in the presence of the ripple effect," International Journal of Production Economics, Elsevier, vol. 228(C).
    9. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    10. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    11. Chatterjee, Abheek & Layton, Astrid, 2020. "Mimicking nature for resilient resource and infrastructure network design," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    13. Kaur, Harpreet & Prakash Singh, Surya, 2021. "Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies," International Journal of Production Economics, Elsevier, vol. 231(C).
    14. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    15. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    16. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    17. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2016. "A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 116-133.
    18. Li, Guo & Xue, Jing & Li, Na & Ivanov, Dmitry, 2022. "Blockchain-supported business model design, supply chain resilience, and firm performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    19. Jie Lu & Feng Li & Desheng Wu, 2024. "A Two-Stage Sustainable Supplier Selection Model Considering Disruption Risk," Sustainability, MDPI, vol. 16(9), pages 1-21, May.
    20. Sawik, Tadeusz, 2021. "On the risk-averse selection of resilient multi-tier supply portfolio," Omega, Elsevier, vol. 101(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:213:y:2019:i:c:p:124-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.