Forecasting the VaR of crude oil market: Do alternative distributions help?
Author
Abstract
Suggested Citation
DOI: 10.1016/j.eneco.2017.06.015
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Escanciano, Juan Carlos & Pei, Pei, 2012.
"Pitfalls in backtesting Historical Simulation VaR models,"
Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
- Juan Carlos Escanciano & Pei Pei, 2012. "Pitfalls in Backtesting Historical Simulation VaR Models," CAEPR Working Papers 2012-003, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
- Thomas Lux & Leonardo Morales-Arias, 2013. "Relative forecasting performance of volatility models: Monte Carlo evidence," Quantitative Finance, Taylor & Francis Journals, vol. 13(9), pages 1375-1394, September.
- Elena-Ivona Dumitrescu & Christophe Hurlin & Vinson Pham, 2012.
"Backtesting Value-at-Risk: From Dynamic Quantile to Dynamic Binary Tests,"
Finance, Presses universitaires de Grenoble, vol. 33(1), pages 79-112.
- Elena-Ivona Dumitrescu & Christophe Hurlin & Vinson Pham, 2012. "Backtesting Value-at-Risk: From Dynamic Quantile to Dynamic Binary Tests," Working Papers halshs-00671658, HAL.
- Elena Ivona Dumitrescu & Christophe Hurlin & Vinson Pham, 2012. "Backtesting Value-at-Risk: From Dynamic Quantile to Dynamic Binary Tests," Post-Print hal-01385901, HAL.
- Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.
- Christiane Baumeister & Lutz Kilian, 2016.
"Understanding the Decline in the Price of Oil since June 2014,"
Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(1), pages 131-158.
- Kilian, Lutz & Baumeister, Christiane, 2015. "Understanding the Decline in the Price of Oil since June 2014," CEPR Discussion Papers 10404, C.E.P.R. Discussion Papers.
- Baumeister, Christiane & Kilian, Lutz, 2015. "Understanding the decline in the price of oil since June 2014," CFS Working Paper Series 501, Center for Financial Studies (CFS).
- Christiane Baumeister & Lutz Kilian, 2016. "Understanding the Decline in the Price of Oil since June 2014," CESifo Working Paper Series 5755, CESifo.
- Panayiotis Theodossiou, 2015. "Skewed Generalized Error Distribution of Financial Assets and Option Pricing," Multinational Finance Journal, Multinational Finance Journal, vol. 19(4), pages 223-266, December.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Robert F. Engle & Simone Manganelli, 2004.
"CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
- Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
- Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
- Pérignon, Christophe & Smith, Daniel R., 2010.
"The level and quality of Value-at-Risk disclosure by commercial banks,"
Journal of Banking & Finance, Elsevier, vol. 34(2), pages 362-377, February.
- Christophe Perignon & D. Smith, 2009. "The Level and Quality of Value-at-Risk Disclosure by Commercial Banks," Post-Print hal-00496102, HAL.
- Christophe Perignon & Daniel R. Smith, 2010. "The level and quality of Value-at-Risk disclosure by commercial banks," Post-Print hal-00528391, HAL.
- Zhu, Dongming & Galbraith, John W., 2010.
"A generalized asymmetric Student-t distribution with application to financial econometrics,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
- John Galbraith & Dongming Zhu, 2009. "A Generalized Asymmetric Student-T Distribution With Application To Financial Econometrics," Departmental Working Papers 2009-02, McGill University, Department of Economics.
- Dongming Zhu & John W. Galbraith, 2009. "A Generalized Asymmetric Student-t Distribution with Application to Financial Econometrics," CIRANO Working Papers 2009s-13, CIRANO.
- Engle, Robert F & Ng, Victor K, 1993.
"Measuring and Testing the Impact of News on Volatility,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
- Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
- Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
- Lutz Kilian, 2009.
"Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market,"
American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
- Kilian, Lutz, 2006. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," CEPR Discussion Papers 5994, C.E.P.R. Discussion Papers.
- Sadeghi, Mehdi & Shavvalpour, Saeed, 2006. "Energy risk management and value at risk modeling," Energy Policy, Elsevier, vol. 34(18), pages 3367-3373, December.
- Hung, Jui-Cheng & Lee, Ming-Chih & Liu, Hung-Chun, 2008. "Estimation of value-at-risk for energy commodities via fat-tailed GARCH models," Energy Economics, Elsevier, vol. 30(3), pages 1173-1191, May.
- Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
- Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
- Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
- Gao, Cuixia & Sun, Mei & Shen, Bo, 2015. "Features and evolution of international fossil energy trade relationships: A weighted multilayer network analysis," Applied Energy, Elsevier, vol. 156(C), pages 542-554.
- Peter F. Christoffersen & Francis X. Diebold, 2000.
"How Relevant is Volatility Forecasting for Financial Risk Management?,"
The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
- Peter F. Christoffersen & Francis X. Diebold, 1997. "How Relevant is Volatility Forecasting for Financial Risk Management?," Center for Financial Institutions Working Papers 97-45, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Peter F. Christoffersen & Francis X. Diebold, 1998. "How Relevant is Volatility Forecasting for Financial Risk Management?," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-080, New York University, Leonard N. Stern School of Business-.
- Peter F. Christoffersen & Francis X. Diebold, 1998. "How Relevant is Volatility Forecasting for Financial Risk Management?," NBER Working Papers 6844, National Bureau of Economic Research, Inc.
- Asger Lunde & Peter R. Hansen, 2005.
"A forecast comparison of volatility models: does anything beat a GARCH(1,1)?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
- Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
- Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
- Hammoudeh, Shawkat & Araújo Santos, Paulo & Al-Hassan, Abdullah, 2013. "Downside risk management and VaR-based optimal portfolios for precious metals, oil and stocks," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 318-334.
- Youssef, Manel & Belkacem, Lotfi & Mokni, Khaled, 2015. "Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach," Energy Economics, Elsevier, vol. 51(C), pages 99-110.
- Babikir, Ali & Gupta, Rangan & Mwabutwa, Chance & Owusu-Sekyere, Emmanuel, 2012.
"Structural breaks and GARCH models of stock return volatility: The case of South Africa,"
Economic Modelling, Elsevier, vol. 29(6), pages 2435-2443.
- Ali Babikir & Rangan Gupta & Chance Mwabutwa & Emmanuel Owusu-Sekyere, 2010. "Structural Breaks and GARCH Models of Stock Return Volatility: The Case of South Africa," Working Papers 201030, University of Pretoria, Department of Economics.
- Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
- Lutz Kilian & Daniel P. Murphy, 2014.
"The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
- Kilian, Lutz & Murphy, Daniel, 2010. "The Role of Inventories and Speculative Trading in the Global Market for Crude Oil," CEPR Discussion Papers 7753, C.E.P.R. Discussion Papers.
- Zhang, Yue-Jun & Yao, Ting, 2016. "Interpreting the movement of oil prices: Driven by fundamentals or bubbles?," Economic Modelling, Elsevier, vol. 55(C), pages 226-240.
- Gronwald, Marc, 2016. "Explosive oil prices," Energy Economics, Elsevier, vol. 60(C), pages 1-5.
- Tokic, Damir, 2012. "Speculation and the 2008 oil bubble: The DCOT Report analysis," Energy Policy, Elsevier, vol. 45(C), pages 541-550.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Fan, Ying & Zhang, Yue-Jun & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Estimating 'Value at Risk' of crude oil price and its spillover effect using the GED-GARCH approach," Energy Economics, Elsevier, vol. 30(6), pages 3156-3171, November.
- He, Kaijian & Lai, Kin Keung & Yen, Jerome, 2011. "Value-at-risk estimation of crude oil price using MCA based transient risk modeling approach," Energy Economics, Elsevier, vol. 33(5), pages 903-911, September.
- Giot, Pierre & Laurent, Sebastien, 2003.
"Market risk in commodity markets: a VaR approach,"
Energy Economics, Elsevier, vol. 25(5), pages 435-457, September.
- GIOT, Pierre & LAURENT, Sébastien, 2003. "Market risk in commodity markets: a VaR approach," LIDAM Reprints CORE 1682, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- GIOT, Pierre & LAURENT, Sébastien, 2003. "Market risk in commodity markets: a VaR approach," LIDAM Discussion Papers CORE 2003028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- David Cabedo, J. & Moya, Ismael, 2003. "Estimating oil price 'Value at Risk' using the historical simulation approach," Energy Economics, Elsevier, vol. 25(3), pages 239-253, May.
- Hansen, Bruce E, 1994.
"Autoregressive Conditional Density Estimation,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
- Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
- Tom Doan, "undated". "RATS programs to replicate Hansen's GARCH models with time-varying t-densities," Statistical Software Components RTZ00086, Boston College Department of Economics.
- Lin, Chu-Hsiung & Changchien, Chang-Cheng & Kao, Tzu-Chuan & Kao, Wei-Shun, 2014. "High-order moments and extreme value approach for value-at-risk," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 421-434.
- Costello, Alexandra & Asem, Ebenezer & Gardner, Eldon, 2008. "Comparison of historically simulated VaR: Evidence from oil prices," Energy Economics, Elsevier, vol. 30(5), pages 2154-2166, September.
- Ferreira, Jose T.A.S. & Steel, Mark F.J., 2006.
"A Constructive Representation of Univariate Skewed Distributions,"
Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 823-829, June.
- Jose T.A.S. Ferreira & Mark F.J. Steel, 2004. "A Constructive Representation of Univariate Skewed Distributions," Econometrics 0403002, University Library of Munich, Germany.
- Tolikas, Konstantinos, 2014. "Unexpected tails in risk measurement: Some international evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 476-493.
- Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.
- Teng‐Hao Huang & Yaw‐Huei Wang, 2012. "The Volatility and Density Prediction Performance of Alternative GARCH Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(2), pages 157-171, March.
- Escanciano, Juan Carlos & Pei, Pei, 2012.
"Pitfalls in backtesting Historical Simulation VaR models,"
Journal of Banking & Finance,
Elsevier, vol. 36(8), pages 2233-2244.
- Juan Carlos Escanciano & Pei Pei, 2012. "Pitfalls in Backtesting Historical Simulation VaR Models," Caepr Working Papers 2012-003, Center for Applied Economics and Policy Research, Economics Department, Indiana University Bloomington.
- Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
- Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dejan Živkov & Slavica Manić & Jelena Kovačević & Željana Trbović, 2022. "Assessing volatility transmission between Brent and stocks in the major global oil producers and consumers – the multiscale robust quantile regression," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(1), pages 67-93, January.
- Amaro, Raphael & Pinho, Carlos & Madaleno, Mara, 2022. "Forecasting the Value-at-Risk of energy commodities: A comparison of models and alternative distribution functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 65, pages 77-101.
- Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
- Dejan Zivkov & Slavica Manic & Jasmina Duraskovic & Jelena Kovacevic, 2019. "Bidirectional Nexus between Inflation and Inflation Uncertainty in the Asian Emerging Markets – The GARCH-in-Mean Approach," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 69(6), pages 580-599, December.
- Marta Małecka & Radosław Pietrzyk, 2024. "A spectral approach to evaluating VaR forecasts: stock market evidence from the subprime mortgage crisis, through COVID-19, to the Russo–Ukrainian war," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4533-4567, October.
- Bei, Shuhua & Yang, Aijun & Pei, Haotian & Si, Xiaoli, 2023. "Price Risk Analysis using GARCH Family Models: Evidence from Shanghai Crude Oil Futures Market," Economic Modelling, Elsevier, vol. 125(C).
- Lyu, Yongjian & Qin, Fanshu & Ke, Rui & Wei, Yu & Kong, Mengzhen, 2024. "Does mixed frequency variables help to forecast value at risk in the crude oil market?," Resources Policy, Elsevier, vol. 88(C).
- Lyu, Yongjian & Wei, Yu & Hu, Yingyi & Yang, Mo, 2021. "Good volatility, bad volatility and economic uncertainty: Evidence from the crude oil futures market," Energy, Elsevier, vol. 222(C).
- Lyu, Yongjian & Qin, Fanshu & Ke, Rui & Yang, Mo & Chang, Jianing, 2024. "Forecasting the VaR of the crude oil market: A combination of mixed data sampling and extreme value theory," Energy Economics, Elsevier, vol. 133(C).
- Amaro, Raphael & Pinho, Carlos, 2022. "Energy commodities: A study on model selection for estimating Value-at-Risk," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 5-27.
- Catalin Popescu & Sorin Alexandru Gheorghiu, 2021. "Economic Analysis and Generic Algorithm for Optimizing the Investments Decision-Making Process in Oil Field Development," Energies, MDPI, vol. 14(19), pages 1-24, September.
- Patra, Saswat, 2021. "Revisiting value-at-risk and expected shortfall in oil markets under structural breaks: The role of fat-tailed distributions," Energy Economics, Elsevier, vol. 101(C).
- Emrah Altun, 2019. "Two-sided exponential–geometric distribution: inference and volatility modeling," Computational Statistics, Springer, vol. 34(3), pages 1215-1245, September.
- Nijolė MAKNICKIENĖ & Jelena STANKEVIČIENĖ & Algirdas MAKNICKAS, 2020. "Comparison of Forex Market Forecasting Tools Based on Evolino Ensemble and Technical Analysis Indicators," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 134-148, September.
- Lu Yang & Shigeyuki Hamori, 2020. "Forecasts of Value-at-Risk and Expected Shortfall in the Crude Oil Market: A Wavelet-Based Semiparametric Approach," Energies, MDPI, vol. 13(14), pages 1-27, July.
- Wu, Junhao & Dong, Jinghan & Wang, Zhaocai & Hu, Yuan & Dou, Wanting, 2023. "A novel hybrid model based on deep learning and error correction for crude oil futures prices forecast," Resources Policy, Elsevier, vol. 83(C).
- Zou, Yingchao & Yu, Lean & Tso, Geoffrey K.F. & He, Kaijian, 2020. "Risk forecasting in the crude oil market: A multiscale Convolutional Neural Network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
- Luo, Changqing & Qu, Yi & Su, Yaya & Dong, Liang, 2024. "Risk spillover from international crude oil markets to China’s financial markets: Evidence from extreme events and U.S. monetary policy," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
- Carnero, M. Angeles & León, Angel & Ñíguez, Trino-Manuel, 2023. "Skewness in energy returns: estimation, testing and retain-->implications for tail risk," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 178-189.
- Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2019. "Quantifying Risk in Traditional Energy and Sustainable Investments," Sustainability, MDPI, vol. 11(3), pages 1-22, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lyu, Yongjian & Qin, Fanshu & Ke, Rui & Wei, Yu & Kong, Mengzhen, 2024. "Does mixed frequency variables help to forecast value at risk in the crude oil market?," Resources Policy, Elsevier, vol. 88(C).
- Lyu, Yongjian & Qin, Fanshu & Ke, Rui & Yang, Mo & Chang, Jianing, 2024. "Forecasting the VaR of the crude oil market: A combination of mixed data sampling and extreme value theory," Energy Economics, Elsevier, vol. 133(C).
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
- Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
- Patra, Saswat, 2021. "Revisiting value-at-risk and expected shortfall in oil markets under structural breaks: The role of fat-tailed distributions," Energy Economics, Elsevier, vol. 101(C).
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Lu Yang & Shigeyuki Hamori, 2020. "Forecasts of Value-at-Risk and Expected Shortfall in the Crude Oil Market: A Wavelet-Based Semiparametric Approach," Energies, MDPI, vol. 13(14), pages 1-27, July.
- Cheng, Wan-Hsiu & Hung, Jui-Cheng, 2011. "Skewness and leptokurtosis in GARCH-typed VaR estimation of petroleum and metal asset returns," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 160-173, January.
- Halkos, George E. & Tsirivis, Apostolos S., 2019. "Value-at-risk methodologies for effective energy portfolio risk management," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 197-212.
- Ghorbel, Ahmed & Trabelsi, Abdelwahed, 2014. "Energy portfolio risk management using time-varying extreme value copula methods," Economic Modelling, Elsevier, vol. 38(C), pages 470-485.
- František Čech & Jozef Baruník, 2019.
"Panel quantile regressions for estimating and predicting the value‐at‐risk of commodities,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(9), pages 1167-1189, September.
- Frantiv{s}ek v{C}ech & Jozef Barun'ik, 2018. "Panel quantile regressions for estimating and predicting the Value--at--Risk of commodities," Papers 1807.11823, arXiv.org.
- Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
- de Araújo, André da Silva & Garcia, Maria Teresa Medeiros, 2013. "Risk contagion in the north-western and southern European stock markets," Journal of Economics and Business, Elsevier, vol. 69(C), pages 1-34.
- Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
- Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
- Onder Buberkoku, 2018. "Examining the Value-at-risk Performance of Fractionally Integrated GARCH Models: Evidence from Energy Commodities," International Journal of Economics and Financial Issues, Econjournals, vol. 8(3), pages 36-50.
- Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2019. "Quantifying Risk in Traditional Energy and Sustainable Investments," Sustainability, MDPI, vol. 11(3), pages 1-22, January.
- Su, Jung-Bin & Hung, Jui-Cheng, 2011. "Empirical analysis of jump dynamics, heavy-tails and skewness on value-at-risk estimation," Economic Modelling, Elsevier, vol. 28(3), pages 1117-1130, May.
- Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
More about this item
Keywords
Crude oil market; Value at risk; Generalized asymmetric Student-t distribution;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:66:y:2017:i:c:p:523-534. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.