IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v173y2016icp207-222.html
   My bibliography  Save this article

A framework to estimate the cost of No-Fault Found events

Author

Listed:
  • Ahmet Erkoyuncu, John
  • Khan, Samir
  • Hussain, Syed Mohammed Fazal
  • Roy, Rajkumar

Abstract

The article investigates a generic framework to estimate maintenance costs attributed to the No Fault Found (NFF) phenomenon. Such overhead costs are particularly difficult to quantify due to potentially serviceable equipment being returned for repair. Other factors, such as a reduction in the availability of the system, compromising reliability of high value assets, and logistical factors, can all contribute to the cost of resolving an unknown fault. Here we apply the soft systems methodology to capture the critical cost drivers of NFF across the supply chain and build a framework to estimate the cost of NFF. We use a multi-method design including an online survey, workshops and semi-structured interviews to study NFF related cost practices based on information from 12 key participants across 7 UK organisations. The study identifies the major NFF cost drivers across the supply chain (e.g. transportation), the OEM (e.g. inventory) and the customer (e.g. lost man hours). An agent based model is used to evaluate the impact of these cost drivers on the overall NFF cost. The analysis shows how the most appropriate drivers can be selected to represent the cumulative costs due to NFF events and their impacts across the supply network. From the academic perspective, the generic framework for NFF cost estimation demonstrates how qualitative and quantitative information can be used together to achieve maintenance objectives. From a practical perspective, by applying the framework on one component, an organisation has the liberty to analyse the cost of NFF for that particular unit only.

Suggested Citation

  • Ahmet Erkoyuncu, John & Khan, Samir & Hussain, Syed Mohammed Fazal & Roy, Rajkumar, 2016. "A framework to estimate the cost of No-Fault Found events," International Journal of Production Economics, Elsevier, vol. 173(C), pages 207-222.
  • Handle: RePEc:eee:proeco:v:173:y:2016:i:c:p:207-222
    DOI: 10.1016/j.ijpe.2015.12.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527315005381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2015.12.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swanson, Laura, 2003. "An information-processing model of maintenance management," International Journal of Production Economics, Elsevier, vol. 83(1), pages 45-64, January.
    2. Wu, Shaomin, 2011. "Warranty claim analysis considering human factors," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 131-138.
    3. Khan, Samir & Phillips, Paul & Jennions, Ian & Hockley, Chris, 2014. "No Fault Found events in maintenance engineering Part 1: Current trends, implications and organizational practices," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 183-195.
    4. Jin, Tongdan & Janamanchi, Balaji & Feng, Qianmei, 2011. "Reliability deployment in distributed manufacturing chains via closed-loop Six Sigma methodology," International Journal of Production Economics, Elsevier, vol. 130(1), pages 96-103, March.
    5. Basten, R.J.I. & van der Heijden, M.C. & Schutten, J.M.J., 2011. "Practical extensions to a minimum cost flow model for level of repair analysis," European Journal of Operational Research, Elsevier, vol. 211(2), pages 333-342, June.
    6. Pinjala, Srinivas Kumar & Pintelon, Liliane & Vereecke, Ann, 2006. "An empirical investigation on the relationship between business and maintenance strategies," International Journal of Production Economics, Elsevier, vol. 104(1), pages 214-229, November.
    7. Fan, Chin-Yuan & Fan, Pei-Shu & Chang, Pei-Chann, 2010. "A system dynamics modeling approach for a military weapon maintenance supply system," International Journal of Production Economics, Elsevier, vol. 128(2), pages 457-469, December.
    8. Wu, Shaomin, 2014. "Warranty return policies for products with unknown claim causes and their optimisation," International Journal of Production Economics, Elsevier, vol. 156(C), pages 52-61.
    9. Darwish, M.A. & Ben-Daya, M., 2007. "Effect of inspection errors and preventive maintenance on a two-stage production inventory system," International Journal of Production Economics, Elsevier, vol. 107(1), pages 301-313, May.
    10. Basten, R.J.I. & van der Heijden, M.C. & Schutten, J.M.J., 2011. "A minimum cost flow model for level of repair analysis," International Journal of Production Economics, Elsevier, vol. 133(1), pages 233-242, September.
    11. Chemweno, Peter & Pintelon, Liliane & Van Horenbeek, Adriaan & Muchiri, Peter, 2015. "Development of a risk assessment selection methodology for asset maintenance decision making: An analytic network process (ANP) approach," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 663-676.
    12. Van Horenbeek, Adriaan & Buré, Jasmine & Cattrysse, Dirk & Pintelon, Liliane & Vansteenwegen, Pieter, 2013. "Joint maintenance and inventory optimization systems: A review," International Journal of Production Economics, Elsevier, vol. 143(2), pages 499-508.
    13. Khan, Samir & Phillips, Paul & Hockley, Chris & Jennions, Ian, 2014. "No Fault Found events in maintenance engineering Part 2: Root causes, technical developments and future research," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 196-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Vipin Prakash & Ganguly, Kunal K. & Hussain, Syed Mohammed Fazal, 2024. "Understanding no fault found event risk in military aircraft MRO planning: A step towards robust bidding and contract finalization," International Journal of Production Economics, Elsevier, vol. 275(C).
    2. Erkoyuncu, John Ahmet & Khan, Samir & Eiroa, Alexandre López & Butler, Nigel & Rushton, Keith & Brocklebank, Simon, 2017. "Perspectives on trading cost and availability for corrective maintenance at the equipment type level," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 53-69.
    3. Alexandre de A. Gomes Júnior & Vanessa B. Schramm, 2022. "Problem Structuring Methods: A Review of Advances Over the Last Decade," Systemic Practice and Action Research, Springer, vol. 35(1), pages 55-88, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dinis, Duarte & Barbosa-Póvoa, Ana & Teixeira, Ângelo Palos, 2019. "A supporting framework for maintenance capacity planning and scheduling: Development and application in the aircraft MRO industry," International Journal of Production Economics, Elsevier, vol. 218(C), pages 1-15.
    2. Izack Cohen & Morris A. Cohen & Elad Landau, 2017. "On sourcing and stocking policies in a two-echelon, multiple location, repairable parts supply chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 617-629, June.
    3. Patriarca, Riccardo & Costantino, Francesco & Di Gravio, Giulio & Tronci, Massimo, 2016. "Inventory optimization for a customer airline in a Performance Based Contract," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 206-216.
    4. Yoon, Joung Taek & Youn, Byeng D. & Yoo, Minji & Kim, Yunhan & Kim, Sooho, 2019. "Life-cycle maintenance cost analysis framework considering time-dependent false and missed alarms for fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 181-192.
    5. Yazdekhasti, Amin & sharifzadeh, Shila & Ma, Junfeng, 2022. "A two-echelon two-indenture warranty distribution network development and optimization under batch-ordering inventory policy," International Journal of Production Economics, Elsevier, vol. 249(C).
    6. Parada Puig, J.E. & Basten, R.J.I., 2015. "Defining line replaceable units," European Journal of Operational Research, Elsevier, vol. 247(1), pages 310-320.
    7. Alsyouf, Imad, 2009. "Maintenance practices in Swedish industries: Survey results," International Journal of Production Economics, Elsevier, vol. 121(1), pages 212-223, September.
    8. Han, Changwoon & Park, Seungil & Lee, Hyeonseok, 2019. "Intermittent failure in electrical interconnection of avionics system," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 61-71.
    9. R. Basten & M. Heijden & J. Schutten & E. Kutanoglu, 2015. "An approximate approach for the joint problem of level of repair analysis and spare parts stocking," Annals of Operations Research, Springer, vol. 224(1), pages 121-145, January.
    10. Singh, Vipin Prakash & Ganguly, Kunal K. & Hussain, Syed Mohammed Fazal, 2024. "Understanding no fault found event risk in military aircraft MRO planning: A step towards robust bidding and contract finalization," International Journal of Production Economics, Elsevier, vol. 275(C).
    11. Prakash Chandra & Yogesh Mani Tripathi & Liang Wang & Chandrakant Lodhi, 2023. "Estimation for Kies distribution with generalized progressive hybrid censoring under partially observed competing risks model," Journal of Risk and Reliability, , vol. 237(6), pages 1048-1072, December.
    12. Ma, N., 2014. "Optimal scope of supply chain network & operations design," Other publications TiSEM e6187708-b664-44bf-aef8-f, Tilburg University, School of Economics and Management.
    13. Basten, R.J.I. & van der Heijden, M.C. & Schutten, J.M.J., 2012. "Joint optimization of level of repair analysis and spare parts stocks," European Journal of Operational Research, Elsevier, vol. 222(3), pages 474-483.
    14. James J. H. Liou & Perry C. Y. Liu & Huai-Wei Lo, 2020. "A Failure Mode Assessment Model Based on Neutrosophic Logic for Switched-Mode Power Supply Risk Analysis," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    15. Luo, Ming & Wu, Shaomin, 2019. "A comprehensive analysis of warranty claims and optimal policies," European Journal of Operational Research, Elsevier, vol. 276(1), pages 144-159.
    16. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    17. Nitin Panwar & Sanjeev Kumar, 2022. "Mathematical modelling and performance analysis of screening unit in paper plant," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2751-2763, October.
    18. Khalifa Mohammed Al-Sobai & Shaligram Pokharel & Galal M. Abdella, 2020. "Perspectives on the Capabilities for the Selection of Strategic Projects," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    19. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    20. Khan, Samir & Phillips, Paul & Jennions, Ian & Hockley, Chris, 2014. "No Fault Found events in maintenance engineering Part 1: Current trends, implications and organizational practices," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 183-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:173:y:2016:i:c:p:207-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.