IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v123y2014icp183-195.html
   My bibliography  Save this article

No Fault Found events in maintenance engineering Part 1: Current trends, implications and organizational practices

Author

Listed:
  • Khan, Samir
  • Phillips, Paul
  • Jennions, Ian
  • Hockley, Chris

Abstract

This paper presents the first part of a state of the art review on the No Fault Found (NFF) phenomenon. The aim has been to compile a systematic reference point for burgeoning NFF literature, and to provide a comprehensive overview for gaining an understanding of NFF knowledge and concepts. Increasing systems complexities have seen a rise in the number of unknown failures that are being reported during operational service. Units tagged as ‘NFF’ are evidence that a serviceable component was removed, and attempts to troubleshoot the root cause have been unsuccessful. There are many reasons on how these failures manifest themselves and these papers describe the prominent issues that have persisted across a variety of industrial applications and processes for decades. This article, in particular, deals with the impact of NFF from an organizational culture and human factors point of view. It also highlights recent developments in NFF standards, its financial implications and safety concerns.

Suggested Citation

  • Khan, Samir & Phillips, Paul & Jennions, Ian & Hockley, Chris, 2014. "No Fault Found events in maintenance engineering Part 1: Current trends, implications and organizational practices," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 183-195.
  • Handle: RePEc:eee:reensy:v:123:y:2014:i:c:p:183-195
    DOI: 10.1016/j.ress.2013.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013003001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Tongdan & Janamanchi, Balaji & Feng, Qianmei, 2011. "Reliability deployment in distributed manufacturing chains via closed-loop Six Sigma methodology," International Journal of Production Economics, Elsevier, vol. 130(1), pages 96-103, March.
    2. Wu, Shaomin, 2013. "A review on coarse warranty data and analysis," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 1-11.
    3. Balaji Janamanchi & Tongdan Jin, 2010. "Reliability growth vs. HASS cost for product manufacturing with fast-to-market requirement," International Journal of Productivity and Quality Management, Inderscience Enterprises Ltd, vol. 5(2), pages 152-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Changwoon & Park, Seungil & Lee, Hyeonseok, 2019. "Intermittent failure in electrical interconnection of avionics system," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 61-71.
    2. Ahmet Erkoyuncu, John & Khan, Samir & Hussain, Syed Mohammed Fazal & Roy, Rajkumar, 2016. "A framework to estimate the cost of No-Fault Found events," International Journal of Production Economics, Elsevier, vol. 173(C), pages 207-222.
    3. Singh, Vipin Prakash & Ganguly, Kunal K. & Hussain, Syed Mohammed Fazal, 2024. "Understanding no fault found event risk in military aircraft MRO planning: A step towards robust bidding and contract finalization," International Journal of Production Economics, Elsevier, vol. 275(C).
    4. Erkoyuncu, John Ahmet & Khan, Samir & Eiroa, Alexandre López & Butler, Nigel & Rushton, Keith & Brocklebank, Simon, 2017. "Perspectives on trading cost and availability for corrective maintenance at the equipment type level," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 53-69.
    5. Prakash Chandra & Yogesh Mani Tripathi & Liang Wang & Chandrakant Lodhi, 2023. "Estimation for Kies distribution with generalized progressive hybrid censoring under partially observed competing risks model," Journal of Risk and Reliability, , vol. 237(6), pages 1048-1072, December.
    6. Yoon, Joung Taek & Youn, Byeng D. & Yoo, Minji & Kim, Yunhan & Kim, Sooho, 2019. "Life-cycle maintenance cost analysis framework considering time-dependent false and missed alarms for fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 181-192.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiujie & He, Shuguang & Xie, Min, 2018. "Utilizing experimental degradation data for warranty cost optimization under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 108-119.
    2. Wu, Shaomin, 2014. "Construction of asymmetric copulas and its application in two-dimensional reliability modelling," European Journal of Operational Research, Elsevier, vol. 238(2), pages 476-485.
    3. Zhou, Chongwen & Chinnam, Ratna Babu & Dalkiran, Evrim & Korostelev, Alexander, 2017. "Bayesian approach to hazard rate models for early detection of warranty and reliability problems using upstream supply chain information," International Journal of Production Economics, Elsevier, vol. 193(C), pages 316-331.
    4. Wang, Xiaolin & Li, Lishuai & Xie, Min, 2020. "An unpunctual preventive maintenance policy under two-dimensional warranty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 304-318.
    5. Gupta, Sanjib Kumar & De, Soumen & Chatterjee, Aditya, 2014. "Warranty forecasting from incomplete two-dimensional warranty data," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 1-13.
    6. Lin, Kunsong & Chen, Yunxia, 2021. "Analysis of two-dimensional warranty data considering global and local dependence of heterogeneous marginals," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Utkin, Lev V. & Coolen, Frank P.A. & Gurov, Sergey V., 2015. "Imprecise inference for warranty contract analysis," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 31-39.
    8. Nikunja Mohan Modak & Shibaji Panda & Shib Sankar Sana, 2015. "Managing a two-echelon supply chain with price, warranty and quality dependent demand," Cogent Business & Management, Taylor & Francis Journals, vol. 2(1), pages 1011014-101, December.
    9. Jeon, Jeasu & Sohn, So Young, 2015. "Product failure pattern analysis from warranty data using association rule and Weibull regression analysis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 176-183.
    10. Shokouhyar, Sajjad & Ahmadi, Sadra & Ashrafzadeh, Mahdi, 2021. "Promoting a novel method for warranty claim prediction based on social network data," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Anshu Gupta & Pallavi Sharma & Akansha Jain & Hongbo Xue & S. C. Malik & P. C. Jha, 2023. "An integrated DEMATEL Six Sigma hybrid framework for manufacturing process improvement," Annals of Operations Research, Springer, vol. 322(2), pages 713-753, March.
    12. Ahmet Erkoyuncu, John & Khan, Samir & Hussain, Syed Mohammed Fazal & Roy, Rajkumar, 2016. "A framework to estimate the cost of No-Fault Found events," International Journal of Production Economics, Elsevier, vol. 173(C), pages 207-222.
    13. Khan, Samir & Phillips, Paul & Hockley, Chris & Jennions, Ian, 2014. "No Fault Found events in maintenance engineering Part 2: Root causes, technical developments and future research," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 196-208.
    14. Wu, Shaomin, 2014. "Warranty return policies for products with unknown claim causes and their optimisation," International Journal of Production Economics, Elsevier, vol. 156(C), pages 52-61.
    15. Kumar Gupta, Sanjib & De, Soumen & Chatterjee, Aditya, 2017. "Some reliability issues for incomplete two-dimensional warranty claims data," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 64-77.
    16. Xiaolin Wang & Wei Xie, 2018. "Two-dimensional warranty: A literature review," Journal of Risk and Reliability, , vol. 232(3), pages 284-307, June.
    17. Kristianto, Yohanes & Gunasekaran, Angappa & Helo, Petri, 2017. "Building the “Triple R” in global manufacturing," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 607-619.
    18. Chen, Xiangpeng & Wang, Rongxi & Gao, Jianmin, 2023. "An optimization framework for enterprise quality infrastructure system under coupling constraints," International Journal of Production Economics, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:123:y:2014:i:c:p:183-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.