IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v185y2019icp61-71.html
   My bibliography  Save this article

Intermittent failure in electrical interconnection of avionics system

Author

Listed:
  • Han, Changwoon
  • Park, Seungil
  • Lee, Hyeonseok

Abstract

The intermittent failure is one of the causes of No-Fault-Found (NFF). Intermittent failure in electrical interconnections of avionics is intensively investigated. An avionics system vulnerable to the intermittent failure is identified and its mockup is constructed. Vibration and thermal cycling tests are conducted to generate intermittent failures in the interconnections of the mockup. Intermittent failures occur after the accelerated thermal cycling test in vibration environment. Failure analysis reveals a line of crack at the interconnection. The mechanism for the crack generation is explained by a numerical simulation. A hypothesis is suggested for the explanation of the occurrence of intermittent failure from the crack. A combined vibration and temperature test is conducted to verify the hypothesis. The test results follow the expectation of the hypothesis.

Suggested Citation

  • Han, Changwoon & Park, Seungil & Lee, Hyeonseok, 2019. "Intermittent failure in electrical interconnection of avionics system," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 61-71.
  • Handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:61-71
    DOI: 10.1016/j.ress.2018.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018309451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, Samir & Phillips, Paul & Jennions, Ian & Hockley, Chris, 2014. "No Fault Found events in maintenance engineering Part 1: Current trends, implications and organizational practices," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 183-195.
    2. Khan, Samir & Phillips, Paul & Hockley, Chris & Jennions, Ian, 2014. "No Fault Found events in maintenance engineering Part 2: Root causes, technical developments and future research," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 196-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Xiaoyu & Qu, Jianfeng & Chai, Yi, 2023. "Self-supervised intermittent fault detection for analog circuits guided by prior knowledge," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoon, Joung Taek & Youn, Byeng D. & Yoo, Minji & Kim, Yunhan & Kim, Sooho, 2019. "Life-cycle maintenance cost analysis framework considering time-dependent false and missed alarms for fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 181-192.
    2. Ahmet Erkoyuncu, John & Khan, Samir & Hussain, Syed Mohammed Fazal & Roy, Rajkumar, 2016. "A framework to estimate the cost of No-Fault Found events," International Journal of Production Economics, Elsevier, vol. 173(C), pages 207-222.
    3. Prakash Chandra & Yogesh Mani Tripathi & Liang Wang & Chandrakant Lodhi, 2023. "Estimation for Kies distribution with generalized progressive hybrid censoring under partially observed competing risks model," Journal of Risk and Reliability, , vol. 237(6), pages 1048-1072, December.
    4. Lee, Jinwoo & Kwon, Daeil & Kim, Namhun & Lee, Changyong, 2019. "PHM-based wiring system damage estimation for near zero downtime in manufacturing facilities," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 213-218.
    5. Ajith Tom James & O. P. Gandhi & S. G. Deshmukh, 2017. "Assessment of failures in automobiles due to maintenance errors," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 719-739, December.
    6. Erkoyuncu, John Ahmet & Khan, Samir & Eiroa, Alexandre López & Butler, Nigel & Rushton, Keith & Brocklebank, Simon, 2017. "Perspectives on trading cost and availability for corrective maintenance at the equipment type level," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 53-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:61-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.