IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077922000327.html
   My bibliography  Save this article

Non-fractional and fractional mathematical analysis and simulations for Q fever

Author

Listed:
  • Asamoah, Joshua Kiddy K.
  • Okyere, Eric
  • Yankson, Ernest
  • Opoku, Alex Akwasi
  • Adom-Konadu, Agnes
  • Acheampong, Edward
  • Arthur, Yarhands Dissou

Abstract

The purpose of analysing the transmission dynamism of Q fever (Coxiellosis) in livestock and incorporating ticks is to outline some management practices to minimise the spread of the disease in livestock. Ticks pass coxiellosis from an infected to a susceptible animal through a bite. The faecal matter can also contain coxiellosis, thus contaminating the environment and spreading the disease. First, a nonlinear integer order mathematical model is developed to represent the spread of this infectious disease in livestock. The proposed integer model investigates the positivity and boundedness, disease equilibria, basic reproduction number, bifurcation, and sensitivity analysis. Through mathematical analysis and numerical simulations, it shows that if the environmental transmission and the effective shedding rate of coxiella burnetii into the environment by both asymptomatic and symptomatic livestock are zero, then the usual threshold hold and it produces forward bifurcation. It is noticed that an increase in the recruitment rate of ticks produces backward bifurcation. And also, it is seen that an increase in the natural decay rate of the bacterial in the environment reduces the backward bifurcation point. Furthermore, to take care of the memory aspect of ticks on their host, we modified the initially proposed integer order model by introducing Caputo, Caputo-Fabrizio, Atangana-Baleanu fractional differential operators. The existence and uniqueness of these three newly developed fractional-order differential models are shown using the Banach fixed point theorem. Numerical trajectories are obtained for each of the fractional-order mathematical models. The trajectory of some fractional orders converges to the same endemic equilibrium point as the integer order. Finally, it is seen that the Atangana-Baleanu fractional differential operator captures more susceptibilities and fewer infections than the other operators.

Suggested Citation

  • Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000327
    DOI: 10.1016/j.chaos.2022.111821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922000327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
    2. Silva, Cristiana J. & Torres, Delfim F.M., 2019. "Stability of a fractional HIV/AIDS model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 164(C), pages 180-190.
    3. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Khajanchi, Subhas & Das, Dhiraj Kumar & Kar, Tapan Kumar, 2018. "Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 52-71.
    5. Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "The impact of the media awareness and optimal strategy on the prevalence of tuberculosis," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    6. Asamoah, Joshua Kiddy K. & Nyabadza, Farai & Jin, Zhen & Bonyah, Ebenezer & Khan, Muhammad Altaf & Li, Michael Y. & Hayat, Tasawar, 2020. "Backward bifurcation and sensitivity analysis for bacterial meningitis transmission dynamics with a nonlinear recovery rate," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Joshua Kiddy K. Asamoah & Francis T. Oduro & Ebenezer Bonyah & Baba Seidu, 2017. "Modelling of Rabies Transmission Dynamics Using Optimal Control Analysis," Journal of Applied Mathematics, Hindawi, vol. 2017, pages 1-23, July.
    8. Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "Transmission dynamics of tuberculosis with multiple re-infections," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    9. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    10. Qureshi, Sania & Bonyah, Ebenezer & Shaikh, Asif Ali, 2019. "Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    11. Gao, Wei & Ghanbari, Behzad & Baskonus, Haci Mehmet, 2019. "New numerical simulations for some real world problems with Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 34-43.
    12. Khajanchi, Subhas & Bera, Sovan & Roy, Tapan Kumar, 2021. "Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 354-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asamoah, Joshua Kiddy K. & Fatmawati,, 2023. "A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Xu, Changjin & Farman, Muhammad, 2023. "Qualitative and Ulam–Hyres stability analysis of fractional order cancer-immune model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Kanwal, Tanzeela & Hussain, Azhar & Avcı, İbrahim & Etemad, Sina & Rezapour, Shahram & Torres, Delfim F.M., 2024. "Dynamics of a model of polluted lakes via fractal–fractional operators with two different numerical algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Asamoah, Joshua Kiddy K. & Sun, Gui-Quan, 2023. "Fractional Caputo and sensitivity heat map for a gonorrhea transmission model in a sex structured population," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    5. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    6. Omame, Andrew & Abbas, Mujahid & Abdel-Aty, Abdel-Haleem, 2022. "Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Xu, Changjin & Liu, Zixin & Pang, Yicheng & Akgül, Ali & Baleanu, Dumitru, 2022. "Dynamics of HIV-TB coinfection model using classical and Caputo piecewise operator: A dynamic approach with real data from South-East Asia, European and American regions," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    8. Hashem Najafi & Sina Etemad & Nichaphat Patanarapeelert & Joshua Kiddy K. Asamoah & Shahram Rezapour & Thanin Sitthiwirattham, 2022. "A Study on Dynamics of CD4 + T-Cells under the Effect of HIV-1 Infection Based on a Mathematical Fractal-Fractional Model via the Adams-Bashforth Scheme and Newton Polynomials," Mathematics, MDPI, vol. 10(9), pages 1-32, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Bandekar, Shraddha Ramdas & Ghosh, Mini, 2022. "A co-infection model on TB - COVID-19 with optimal control and sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 1-31.
    3. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Respiration Effect on Plankton–Oxygen Dynamics in view of non-singular time fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    4. Asamoah, Joshua Kiddy K. & Jin, Zhen & Sun, Gui-Quan & Seidu, Baba & Yankson, Ernest & Abidemi, Afeez & Oduro, F.T. & Moore, Stephen E. & Okyere, Eric, 2021. "Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    6. Das, Dhiraj Kumar & Kar, T.K., 2021. "Global dynamics of a tuberculosis model with sensitivity of the smear microscopy," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Khajanchi, Subhas & Bera, Sovan & Roy, Tapan Kumar, 2021. "Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 354-378.
    8. Abidemi, Afeez & Ackora-Prah, Joseph & Fatoyinbo, Hammed Olawale & Asamoah, Joshua Kiddy K., 2022. "Lyapunov stability analysis and optimization measures for a dengue disease transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    9. Abidemi, Afeez & Owolabi, Kolade M. & Pindza, Edson, 2022. "Modelling the transmission dynamics of Lassa fever with nonlinear incidence rate and vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    10. Christopher Nicholas Angstmann & Byron Alexander Jacobs & Bruce Ian Henry & Zhuang Xu, 2020. "Intrinsic Discontinuities in Solutions of Evolution Equations Involving Fractional Caputo–Fabrizio and Atangana–Baleanu Operators," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    11. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    12. Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D.G. & Gao, Wei & Yel, Gulnur, 2020. "Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    13. Qureshi, Sania & Aziz, Shaheen, 2020. "Fractional modeling for a chemical kinetic reaction in a batch reactor via nonlocal operator with power law kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    14. Kumar, Arjun & Dubey, Uma S. & Dubey, Balram, 2024. "The impact of social media advertisements and treatments on the dynamics of infectious diseases with optimal control strategies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 50-86.
    15. Arshad, Sadia & Siddique, Imran & Nawaz, Fariha & Shaheen, Aqila & Khurshid, Hina, 2023. "Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    16. Sarkar, Kankan & Khajanchi, Subhas & Nieto, Juan J., 2020. "Modeling and forecasting the COVID-19 pandemic in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Yusuf, Abdullahi & Qureshi, Sania & Feroz Shah, Syed, 2020. "Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    18. Mustapha, Umar Tasiu & Qureshi, Sania & Yusuf, Abdullahi & Hincal, Evren, 2020. "Fractional modeling for the spread of Hookworm infection under Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    19. Qureshi, Sania, 2020. "Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    20. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Oxygen-plankton model under the effect of global warming with nonsingular fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.