IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v27y2011i4p1215-1240.html
   My bibliography  Save this article

Forecasting television ratings

Author

Listed:
  • Danaher, Peter J.
  • Dagger, Tracey S.
  • Smith, Michael S.

Abstract

Despite the state of flux in media today, television remains the dominant player globally for advertising spending. Since television advertising time is purchased on the basis of projected future ratings, and ad costs have skyrocketed, there is increasingly pressure to forecast television ratings accurately. The forecasting methods that have been used in the past are not generally very reliable, and many have not been validated; also, even more distressingly, none have been tested in today's multichannel environment. In this study we compare eight different forecasting models, ranging from a naïve empirical method to a state-of-the-art Bayesian model-averaging method. Our data come from a recent time period, namely 2004-2008, in a market with over 70 channels, making the data more typical of today's viewing environment. The simple models that are commonly used in industry do not forecast as well as any econometric models. Furthermore, time series methods are not applicable, as many programs are broadcast only once. However, we find that a relatively straightforward random effects regression model often performs as well as more sophisticated Bayesian models in out-of-sample forecasting. Finally, we demonstrate that making improvements in ratings forecasts could save the television industry between $250 and $586 million per year.

Suggested Citation

  • Danaher, Peter J. & Dagger, Tracey S. & Smith, Michael S., 2011. "Forecasting television ratings," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1215-1240, October.
  • Handle: RePEc:eee:intfor:v:27:y:2011:i:4:p:1215-1240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207011000033
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeffrey H. Horen, 1980. "Scheduling of Network Television Programs," Management Science, INFORMS, vol. 26(4), pages 354-370, April.
    2. Srinivas K. Reddy & Jay E. Aronson & Antonie Stam, 1998. "SPOT: Scheduling Programs Optimally for Television," Management Science, INFORMS, vol. 44(1), pages 83-102, January.
    3. Givon, Moshe & Grosfeld-Nir, Abraham, 2008. "Using partially observed Markov processes to select optimal termination time of TV shows," Omega, Elsevier, vol. 36(3), pages 477-485, June.
    4. Smith, Michael & Kohn, Robert & Mathur, Sharat K., 2000. "Bayesian Semiparametric Regression: An Exposition and Application to Print Advertising Data," Journal of Business Research, Elsevier, vol. 49(3), pages 229-244, September.
    5. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    6. Roland T. Rust & Mark I. Alpert, 1984. "An Audience Flow Model of Television Viewing Choice," Marketing Science, INFORMS, vol. 3(2), pages 113-124.
    7. Danaher, Peter J., 1994. "Comparing naive with econometric market share models when competitors' actions are forecast," International Journal of Forecasting, Elsevier, vol. 10(2), pages 287-294, September.
    8. Nikolopoulos, K. & Goodwin, P. & Patelis, A. & Assimakopoulos, V., 2007. "Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches," European Journal of Operational Research, Elsevier, vol. 180(1), pages 354-368, July.
    9. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    10. Kelton, Christina M. L. & Schneider Stone, Linda G., 1998. "Optimal television schedules in alternative competitive environments," European Journal of Operational Research, Elsevier, vol. 104(3), pages 451-473, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aiste Ruseckaite & Dennis Fok & Peter Goos, 2016. "Flexible Mixture-Amount Models for Business and Industry using Gaussian Processes," Tinbergen Institute Discussion Papers 16-075/III, Tinbergen Institute.
    2. Danaher, Peter & Dagger, Tracey, 2012. "Using a nested logit model to forecast television ratings," International Journal of Forecasting, Elsevier, vol. 28(3), pages 607-622.
    3. Olexiy Azarov & Leonid Krupelnitsky & Hanna Rakytyanska, 2018. "Television Rating Control in the Multichannel Environment Using Trend Fuzzy Knowledge Bases and Monitoring Results," Data, MDPI, vol. 3(4), pages 1-21, December.
    4. Mayukh Dass & Masoud Moradi & Fereshteh Zihagh, 2023. "Forecasting purchase rates of new products introduced in existing categories," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(3), pages 385-408, September.
    5. Jordi McKenzie, 2023. "The economics of movies (revisited): A survey of recent literature," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 480-525, April.
    6. Wang, Mingyan & Zeng, An & Cui, Xiaohua, 2022. "Collective user switching behavior reveals the influence of TV channels and their hidden community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    7. David A. Schweidel & Natasha Zhang Foutz & Robin J. Tanner, 2014. "Synergy or Interference: The Effect of Product Placement on Commercial Break Audience Decline," Marketing Science, INFORMS, vol. 33(6), pages 763-780, November.
    8. Song, Lianlian & Shi, Yang & Tso, Geoffrey Kwok Fai & Lo, Hing Po, 2021. "Forecasting week-to-week television ratings using reduced-form and structural dynamic models," International Journal of Forecasting, Elsevier, vol. 37(1), pages 302-321.
    9. Giwoong Bae & Hye-jin Kim, 2022. "The impact of online video highlights on TV audience ratings," Electronic Commerce Research, Springer, vol. 22(2), pages 405-425, June.
    10. Keita Kinjo & Shinya Sugawara, 2014. "An Empirical Analysis for a Case-based Decision to Watch Japanese TV dramas," CIRJE F-Series CIRJE-F-940, CIRJE, Faculty of Economics, University of Tokyo.
    11. José Antonio Carbajal & Peter Williams & Andreea Popescu & Wes Chaar, 2019. "Turner Blazes a Trail for Audience Targeting on Television with Operations Research and Advanced Analytics," Interfaces, INFORMS, vol. 49(1), pages 64-89, January.
    12. José Antonio Carbajal & Wes Chaar, 2017. "Turner Optimizes the Allocation of Audience Deficiency Units," Interfaces, INFORMS, vol. 47(6), pages 518-536, December.
    13. Van Reeth, Daam, 2019. "Forecasting Tour de France TV audiences: A multi-country analysis," International Journal of Forecasting, Elsevier, vol. 35(2), pages 810-821.
    14. Alexandra Mello Schmidt & Dani Gamerman & Ajax Moreira, 1999. "An adaptive resampling scheme for cycle estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(5), pages 619-641.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danaher, Peter & Dagger, Tracey, 2012. "Using a nested logit model to forecast television ratings," International Journal of Forecasting, Elsevier, vol. 28(3), pages 607-622.
    2. M J Brusco, 2008. "Scheduling advertising slots for television," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1363-1372, October.
    3. Sha Yang & Vishal Narayan & Henry Assael, 2006. "Estimating the Interdependence of Television Program Viewership Between Spouses: A Bayesian Simultaneous Equation Model," Marketing Science, INFORMS, vol. 25(4), pages 336-349, July.
    4. I. Robert Chiang & Jhih‐Hua Jhang‐Li, 2020. "Competition through Exclusivity in Digital Content Distribution," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1270-1286, May.
    5. Shinjini Pandey & Goutam Dutta & Harit Joshi, 2017. "Survey on Revenue Management in Media and Broadcasting," Interfaces, INFORMS, vol. 47(3), pages 195-213, June.
    6. Srinivas Bollapragada & Marc Garbiras, 2004. "Scheduling Commercials on Broadcast Television," Operations Research, INFORMS, vol. 52(3), pages 337-345, June.
    7. Gaurav Sabnis & Rajdeep Grewal, 2015. "Cable News Wars on the Internet: Competition and User-Generated Content," Information Systems Research, INFORMS, vol. 26(2), pages 301-319, June.
    8. José Antonio Carbajal & Wes Chaar, 2017. "Turner Optimizes the Allocation of Audience Deficiency Units," Interfaces, INFORMS, vol. 47(6), pages 518-536, December.
    9. Srinivas K. Reddy & Jay E. Aronson & Antonie Stam, 1998. "SPOT: Scheduling Programs Optimally for Television," Management Science, INFORMS, vol. 44(1), pages 83-102, January.
    10. José Antonio Carbajal & Peter Williams & Andreea Popescu & Wes Chaar, 2019. "Turner Blazes a Trail for Audience Targeting on Television with Operations Research and Advanced Analytics," Interfaces, INFORMS, vol. 49(1), pages 64-89, January.
    11. Pérez-Gladish, B. & Gonzalez, I. & Bilbao-Terol, A. & Arenas-Parra, M., 2010. "Planning a TV advertising campaign: A crisp multiobjective programming model from fuzzy basic data," Omega, Elsevier, vol. 38(1-2), pages 84-94, February.
    12. Givon, Moshe & Grosfeld-Nir, Abraham, 2008. "Using partially observed Markov processes to select optimal termination time of TV shows," Omega, Elsevier, vol. 36(3), pages 477-485, June.
    13. Eliashberg, Jehoshua & Hegie, Quintus & Ho, Jason & Huisman, Dennis & Miller, Steven J. & Swami, Sanjeev & Weinberg, Charles B. & Wierenga, Berend, 2009. "Demand-driven scheduling of movies in a multiplex," International Journal of Research in Marketing, Elsevier, vol. 26(2), pages 75-88.
    14. Kelton, Christina M. L. & Schneider Stone, Linda G., 1998. "Optimal television schedules in alternative competitive environments," European Journal of Operational Research, Elsevier, vol. 104(3), pages 451-473, February.
    15. Song, Lianlian & Shi, Yang & Tso, Geoffrey Kwok Fai & Lo, Hing Po, 2021. "Forecasting week-to-week television ratings using reduced-form and structural dynamic models," International Journal of Forecasting, Elsevier, vol. 37(1), pages 302-321.
    16. Geršl, Adam & Lešanovská, Jitka, 2014. "Explaining the Czech interbank market risk premium," Economic Systems, Elsevier, vol. 38(4), pages 536-551.
    17. António Afonso & José Alves & Krzysztof Beck, 2022. "Pay and unemployment determinants of migration flows in the European Union," Working Papers REM 2022/0251, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    18. Guarin, Alexander & Lozano, Ignacio, 2017. "Credit funding and banking fragility: A forecasting model for emerging economies," Emerging Markets Review, Elsevier, vol. 32(C), pages 168-189.
    19. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    20. Bond, Craig A. & Thilmany, Dawn D. & Bond, Jennifer Keeling, 2008. "What to Choose? The Value of Label Claims to Fresh Produce Consumers," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 33(3), pages 1-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y:2011:i:4:p:1215-1240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.