IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p43-d192952.html
   My bibliography  Save this article

Online Recognition Method for Voltage Sags Based on a Deep Belief Network

Author

Listed:
  • Fei Mei

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
    Jiangsu Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China)

  • Yong Ren

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Qingliang Wu

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Chenyu Zhang

    (State Grid Jiangsu Electric Power Co., Ltd. Research Institute, Nanjing 211113, China)

  • Yi Pan

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Haoyuan Sha

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Jianyong Zheng

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

Voltage sag is a serious power quality phenomenon that threatens industrial manufacturing and residential electricity. A large-scale monitoring system has been established and continually improved to detect and record voltage sag events. However, the inefficient process of data sampling cannot provide valuable information early enough for governance of the system. Therefore, a novel online recognition method for voltage sags is proposed. The main contributions of this paper include: 1) The causes and waveform characters of voltage sags were analyzed; 2) according to the characters of different sag waveforms, 10 voltage sag characteristic parameters were proposed and proven to be effective; 3) a deep belief network (DBN) model was built using these parameters to complete automatic recognition of the sag event types. Experiments were conducted using voltage sag data from one month recorded by the 10 kV monitoring points in Suqian, Jiangsu Province, China. The results showed good performance of the proposed method: Recognition accuracy was 96.92%. The test results from the proposed method were compared to the results from support vector machine (SVM) recognition methods. The proposed method was shown to outperform SVM.

Suggested Citation

  • Fei Mei & Yong Ren & Qingliang Wu & Chenyu Zhang & Yi Pan & Haoyuan Sha & Jianyong Zheng, 2018. "Online Recognition Method for Voltage Sags Based on a Deep Belief Network," Energies, MDPI, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:43-:d:192952
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/43/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/43/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elbasuony, Ghada S. & Abdel Aleem, Shady H.E. & Ibrahim, Ahmed M. & Sharaf, Adel M., 2018. "A unified index for power quality evaluation in distributed generation systems," Energy, Elsevier, vol. 149(C), pages 607-622.
    2. Guo, Yabin & Tan, Zehan & Chen, Huanxin & Li, Guannan & Wang, Jiangyu & Huang, Ronggeng & Liu, Jiangyan & Ahmad, Tanveer, 2018. "Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving," Applied Energy, Elsevier, vol. 225(C), pages 732-745.
    3. Horia Gheorghe Beleiu & Ioana Natalia Beleiu & Sorin Gheorghe Pavel & Cosmin Pompei Darab, 2018. "Management of Power Quality Issues from an Economic Point of View," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    4. Jun Lin & Lei Su & Yingjie Yan & Gehao Sheng & Da Xie & Xiuchen Jiang, 2018. "Prediction Method for Power Transformer Running State Based on LSTM_DBN Network," Energies, MDPI, vol. 11(7), pages 1-14, July.
    5. Rafael Cisneros-Magaña & Aurelio Medina & Olimpo Anaya-Lara, 2018. "Time-Domain Voltage Sag State Estimation Based on the Unscented Kalman Filter for Power Systems with Nonlinear Components," Energies, MDPI, vol. 11(6), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Indu Sekhar Samanta & Subhasis Panda & Pravat Kumar Rout & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "A Comprehensive Review of Deep-Learning Applications to Power Quality Analysis," Energies, MDPI, vol. 16(11), pages 1-31, May.
    2. Alexandre Serrano-Fontova & Pablo Casals Torrens & Ricard Bosch, 2019. "Power Quality Disturbances Assessment during Unintentional Islanding Scenarios. A Contribution to Voltage Sag Studies," Energies, MDPI, vol. 12(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Rosalia Sinvula & Khaled Mohamed Abo-Al-Ez & Mohamed Tariq Kahn, 2020. "A Proposed Harmonic Monitoring System for Large Power Users Considering Harmonic Limits," Energies, MDPI, vol. 13(17), pages 1-18, September.
    3. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Bielecki, Sławomir & Skoczkowski, Tadeusz, 2018. "An enhanced concept of Q-power management," Energy, Elsevier, vol. 162(C), pages 335-353.
    5. Eom, Yong Hwan & Yoo, Jin Woo & Hong, Sung Bin & Kim, Min Soo, 2019. "Refrigerant charge fault detection method of air source heat pump system using convolutional neural network for energy saving," Energy, Elsevier, vol. 187(C).
    6. Barbie, Eli & Rabinovici, Raul & Kuperman, Alon, 2021. "Analytical formulation and optimization of Weighted Total Harmonic Distortion in three-phase staircase modulated multilevel inverters," Energy, Elsevier, vol. 215(PA).
    7. Jie Yang & Zhimeng Dong & Huihan Yang & Yanyan Liu & Yunjie Wang & Fujiang Chen & Haifei Chen, 2022. "Numerical and Experimental Study on Thermal Comfort of Human Body by Split-Fiber Air Conditioner," Energies, MDPI, vol. 15(10), pages 1-24, May.
    8. Guo, Yabin & Li, Yuduo & Li, Weilin, 2023. "On-site fault experiment and diagnosis research of the carbon dioxide transcritical heat pump system for energy saving," Energy, Elsevier, vol. 274(C).
    9. Jun Kwon Hwang & Patrick Nzivugira Duhirwe & Geun Young Yun & Sukho Lee & Hyeongjoon Seo & Inhan Kim & Mat Santamouris, 2020. "A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    10. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    11. Fan, Cheng & Wu, Qiuting & Zhao, Yang & Mo, Like, 2024. "Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance," Applied Energy, Elsevier, vol. 356(C).
    12. Valery Pupin & Victor Orlov, 2023. "Modeling of Electrical Systems for Uninterrupted Operation of Drives in Case of Short-Term Distortions in the Supply Networks," Energies, MDPI, vol. 16(10), pages 1-20, May.
    13. Huang, Tian-en & Guo, Qinglai & Sun, Hongbin & Tan, Chin-Woo & Hu, Tianyu, 2019. "A deep spatial-temporal data-driven approach considering microclimates for power system security assessment," Applied Energy, Elsevier, vol. 237(C), pages 36-48.
    14. Muhammad Saeed Uz Zaman & Syed Basit Ali Bukhari & Khalid Mousa Hazazi & Zunaib Maqsood Haider & Raza Haider & Chul-Hwan Kim, 2018. "Frequency Response Analysis of a Single-Area Power System with a Modified LFC Model Considering Demand Response and Virtual Inertia," Energies, MDPI, vol. 11(4), pages 1-20, March.
    15. Mihai Rata & Gabriela Rata & Constantin Filote & Maria Simona Raboaca & Adrian Graur & Ciprian Afanasov & Andreea-Raluca Felseghi, 2019. "The ElectricalVehicle Simulator for Charging Station in Mode 3 of IEC 61851-1 Standard," Energies, MDPI, vol. 13(1), pages 1-10, December.
    16. Du, Puliang & Chen, Zhong & Gong, Xiaomin, 2020. "Load response potential evaluation for distribution networks: A hybrid decision-making model with intuitionistic normal cloud and unknown weight information," Energy, Elsevier, vol. 192(C).
    17. Bing Zeng & Jiang Guo & Fangqing Zhang & Wenqiang Zhu & Zhihuai Xiao & Sixu Huang & Peng Fan, 2020. "Prediction Model for Dissolved Gas Concentration in Transformer Oil Based on Modified Grey Wolf Optimizer and LSSVM with Grey Relational Analysis and Empirical Mode Decomposition," Energies, MDPI, vol. 13(2), pages 1-20, January.
    18. Jiang, Wuhao & Wang, Kai & Lv, Yan & Guo, Jianfeng & Ni, Zhongjin & Ni, Yihua, 2020. "Time series based behavior pattern quantification analysis and prediction — A study on animal behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    19. Abbas Marini & Luigi Piegari & S-Saeedallah Mortazavi & Mohammad-S Ghazizadeh, 2020. "Coordinated Operation of Energy Storage Systems for Distributed Harmonic Compensation in Microgrids," Energies, MDPI, vol. 13(3), pages 1-22, February.
    20. Xianyang Cui & Yulong Liu & Ding Yuan & Tao Jin & Mohamed A. Mohamed, 2023. "A Hierarchical Coordinated Control Strategy for Power Quality Improvement in Energy Router Integrated Active Distribution Networks," Sustainability, MDPI, vol. 15(3), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:43-:d:192952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.