IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v38y2022i3p1185-1196.html
   My bibliography  Save this article

Relative performance of judgmental methods for forecasting the success of megaprojects

Author

Listed:
  • Litsiou, Konstantia
  • Polychronakis, Yiannis
  • Karami, Azhdar
  • Nikolopoulos, Konstantinos

Abstract

Forecasting the success of megaprojects, such as the Olympic Games or space exploration missions, is a very difficult but important task, due to their complexity and the large capital investment they require. Typically, megaproject stakeholders do not employ formal forecasting methods, but instead rely on impact assessments and/or cost–benefit analysis; however, as these tools do not necessarily include forecasts, there is no accountability. This study evaluates the effectiveness of judgmental methods for successfully forecasting the accomplishment of specific megaproject objectives, where the measure of success is the collective accomplishment of such objectives. We compare the performances of three judgmental methods used by a group of 69 semi-experts: unaided judgement (UJ), semi-structured analogies (s-SA), and interaction groups (IG). The empirical evidence reveals that the use of s-SA leads to accuracy improvements relative to UJ. These improvements are amplified further when we introduce the pooling of analogies through teamwork in IG.

Suggested Citation

  • Litsiou, Konstantia & Polychronakis, Yiannis & Karami, Azhdar & Nikolopoulos, Konstantinos, 2022. "Relative performance of judgmental methods for forecasting the success of megaprojects," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1185-1196.
  • Handle: RePEc:eee:intfor:v:38:y:2022:i:3:p:1185-1196
    DOI: 10.1016/j.ijforecast.2019.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207019301967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2019.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Armstrong, J. Scott, 2007. "Significance tests harm progress in forecasting," International Journal of Forecasting, Elsevier, vol. 23(2), pages 321-327.
    2. Green, Kesten C., 2002. "Forecasting decisions in conflict situations: a comparison of game theory, role-playing, and unaided judgement," International Journal of Forecasting, Elsevier, vol. 18(3), pages 321-344.
    3. Lee, Wing Yee & Goodwin, Paul & Fildes, Robert & Nikolopoulos, Konstantinos & Lawrence, Michael, 2007. "Providing support for the use of analogies in demand forecasting tasks," International Journal of Forecasting, Elsevier, vol. 23(3), pages 377-390.
    4. Graefe, Andreas & Armstrong, J. Scott, 2011. "Comparing face-to-face meetings, nominal groups, Delphi and prediction markets on an estimation task," International Journal of Forecasting, Elsevier, vol. 27(1), pages 183-195, January.
    5. Green, Kesten C. & Armstrong, J. Scott, 2007. "Structured analogies for forecasting," International Journal of Forecasting, Elsevier, vol. 23(3), pages 365-376.
    6. Nicolas Savio & Konstantinos Nikolopoulos, 2010. "Forecasting the Effectiveness of Policy Implementation Strategies," International Journal of Public Administration, Taylor & Francis Journals, vol. 33(2), pages 88-97.
    7. Armstrong, J. Scott, 2007. "Statistical significance tests are unnecessary even when properly done and properly interpreted: Reply to commentaries," International Journal of Forecasting, Elsevier, vol. 23(2), pages 335-336.
    8. M Vanhoucke & S Vandevoorde, 2007. "A simulation and evaluation of earned value metrics to forecast the project duration," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1361-1374, October.
    9. David M. Boje & J. Keith Murnighan, 1982. "Group Confidence Pressures in Iterative Decisions," Management Science, INFORMS, vol. 28(10), pages 1187-1196, October.
    10. Savio, Nicolas D. & Nikolopoulos, Konstantinos, 2013. "A strategic forecasting framework for governmental decision-making and planning," International Journal of Forecasting, Elsevier, vol. 29(2), pages 311-321.
    11. Flyvbjerg,Bent & Bruzelius,Nils & Rothengatter,Werner, 2003. "Megaprojects and Risk," Cambridge Books, Cambridge University Press, number 9780521009461, October.
    12. Rowe, Gene & Wright, George, 1999. "The Delphi technique as a forecasting tool: issues and analysis," International Journal of Forecasting, Elsevier, vol. 15(4), pages 353-375, October.
    13. Simon, Herbert A, 1979. "Rational Decision Making in Business Organizations," American Economic Review, American Economic Association, vol. 69(4), pages 493-513, September.
    14. J. Scott Armstrong, 1986. "The Ombudsman: Research on Forecasting: A Quarter-Century Review, 1960--1984," Interfaces, INFORMS, vol. 16(1), pages 89-109, February.
    15. Green, Kesten C. & Armstrong, J. Scott, 2015. "Simple versus complex forecasting: The evidence," Journal of Business Research, Elsevier, vol. 68(8), pages 1678-1685.
    16. J. Scott Armstrong & Kesten C. Green, 2018. "Forecasting methods and principles: Evidence-based checklists," Journal of Global Scholars of Marketing Science, Taylor & Francis Journals, vol. 28(2), pages 103-159, April.
    17. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    18. Kesten C. Green & J. Scott Armstrong, 2007. "The Ombudsman: Value of Expertise for Forecasting Decisions in Conflicts," Interfaces, INFORMS, vol. 37(3), pages 287-299, June.
    19. Miller, Roger & Lessard, Donald, 2007. "Evolving Strategy: Risk Management and the Shaping of Large Engineering Projects," Working papers 37157, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    20. Nikolopoulos, Konstantinos & Litsa, Akrivi & Petropoulos, Fotios & Bougioukos, Vasileios & Khammash, Marwan, 2015. "Relative performance of methods for forecasting special events," Journal of Business Research, Elsevier, vol. 68(8), pages 1785-1791.
    21. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    22. Zellner, Arnold, 2007. "Philosophy and objectives of econometrics," Journal of Econometrics, Elsevier, vol. 136(2), pages 331-339, February.
    23. Nikolopoulos, K. & Goodwin, P. & Patelis, A. & Assimakopoulos, V., 2007. "Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches," European Journal of Operational Research, Elsevier, vol. 180(1), pages 354-368, July.
    24. Robert Fildes & Paul Goodwin, 2007. "Good and Bad Judgment in Forecasting: Lessons from Four Companies," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 8, pages 5-10, Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Nikolopoulos, Konstantinos & Litsa, Akrivi & Petropoulos, Fotios & Bougioukos, Vasileios & Khammash, Marwan, 2015. "Relative performance of methods for forecasting special events," Journal of Business Research, Elsevier, vol. 68(8), pages 1785-1791.
    3. Abolghasemi, Mahdi & Hurley, Jason & Eshragh, Ali & Fahimnia, Behnam, 2020. "Demand forecasting in the presence of systematic events: Cases in capturing sales promotions," International Journal of Production Economics, Elsevier, vol. 230(C).
    4. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    5. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    6. Konstantinos Nikolopoulos, 2010. "Forecasting with quantitative methods: the impact of special events in time series," Applied Economics, Taylor & Francis Journals, vol. 42(8), pages 947-955.
    7. Katsagounos, Ilias & Thomakos, Dimitrios D. & Litsiou, Konstantia & Nikolopoulos, Konstantinos, 2021. "Superforecasting reality check: Evidence from a small pool of experts and expedited identification," European Journal of Operational Research, Elsevier, vol. 289(1), pages 107-117.
    8. Konstantinos Nikolopoulos & Waleed S. Alghassab & Konstantia Litsiou & Stelios Sapountzis, 2019. "Long-Term Economic Forecasting with Structured Analogies and Interaction Groups," Working Papers 19018, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
    9. Lu, Emiao & Handl, Julia & Xu, Dong-ling, 2018. "Determining analogies based on the integration of multiple information sources," International Journal of Forecasting, Elsevier, vol. 34(3), pages 507-528.
    10. Green, Kesten C. & Armstrong, J. Scott, 2015. "Simple versus complex forecasting: The evidence," Journal of Business Research, Elsevier, vol. 68(8), pages 1678-1685.
    11. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    12. Savio, Nicolas D. & Nikolopoulos, Konstantinos, 2013. "A strategic forecasting framework for governmental decision-making and planning," International Journal of Forecasting, Elsevier, vol. 29(2), pages 311-321.
    13. Eksoz, Can & Mansouri, S. Afshin & Bourlakis, Michael, 2014. "Collaborative forecasting in the food supply chain: A conceptual framework," International Journal of Production Economics, Elsevier, vol. 158(C), pages 120-135.
    14. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    15. Spithourakis, Georgios P. & Petropoulos, Fotios & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2015. "Amplifying the learning effects via a Forecasting and Foresight Support System," International Journal of Forecasting, Elsevier, vol. 31(1), pages 20-32.
    16. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    17. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    18. Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
    19. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    20. Sroginis, Anna & Fildes, Robert & Kourentzes, Nikolaos, 2023. "Use of contextual and model-based information in adjusting promotional forecasts," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1177-1191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:38:y:2022:i:3:p:1185-1196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.