IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6182-d1438720.html
   My bibliography  Save this article

Inter- and Intra-Driver Reaction Time Heterogeneity in Car-Following Situations

Author

Listed:
  • Mostafa H. Tawfeek

    (Department of Public Works, Faculty of Engineering, Ain Shams University, Cairo 11566, Egypt)

Abstract

This study aims to examine the differences in drivers’ reaction time (RTs) while driving on horizontal curves and straight roadway segments, among different driver classes, and in different driving environments to better understand human driver behavior in typical car-following situations. Therefore, behavioral measures were extracted from naturalistic car-following trajectories to estimate the RT. The RT was estimated for two stimulus–response pairs, namely, the speed–gap and relative speed–acceleration pairs, by using the cross-classification method. The RT was estimated separately for each driver and aggregated based on location and based on driver class. The results reveal that drivers’ RTs on curves are consistently higher than their RTs on straight segments, and this difference is statistically significant. The comparison between normal drivers and aggressive drivers indicates that regardless of the location, aggressive drivers have a significantly longer RT than normal drivers, as aggressive drivers can accept closer gaps and higher relative speed. Also, cautious drivers have a longer RT compared with normal drivers; however, the difference is not significant in most cases. Furthermore, cautious and normal drivers have longer RTs on curves compared with their RTs on straight segments. Additionally, the RT on rural horizontal curves is longer than the RT on urban curves, yet the differences are insignificant.

Suggested Citation

  • Mostafa H. Tawfeek, 2024. "Inter- and Intra-Driver Reaction Time Heterogeneity in Car-Following Situations," Sustainability, MDPI, vol. 16(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6182-:d:1438720
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/6182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/6182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    2. Davis, L.C., 2003. "Modifications of the optimal velocity traffic model to include delay due to driver reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 557-567.
    3. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2006. "Delays, inaccuracies and anticipation in microscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 71-88.
    4. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ronan Keane & H. Oliver Gao, 2021. "Fast Calibration of Car-Following Models to Trajectory Data Using the Adjoint Method," Transportation Science, INFORMS, vol. 55(3), pages 592-615, May.
    2. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    3. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2010. "Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 983-1000, September.
    4. Yifan Pan & Yongjiang Wang & Baobin Miao & Rongjun Cheng, 2022. "Stabilization Strategy of a Novel Car-Following Model with Time Delay and Memory Effect of the Driver," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    5. Koutsopoulos, Haris N. & Farah, Haneen, 2012. "Latent class model for car following behavior," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 563-578.
    6. Tordeux, Antoine & Lassarre, Sylvain & Roussignol, Michel, 2010. "An adaptive time gap car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1115-1131, September.
    7. Calvert, Simeon C. & Schakel, Wouter J. & van Lint, J.W.C., 2020. "A generic multi-scale framework for microscopic traffic simulation part II – Anticipation Reliance as compensation mechanism for potential task overload," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 42-63.
    8. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    9. Zheng, Liang & Jin, Peter J. & Huang, Helai, 2015. "An anisotropic continuum model considering bi-directional information impact," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 36-57.
    10. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    11. Li, Xiaopeng & Peng, Fan & Ouyang, Yanfeng, 2010. "Measurement and estimation of traffic oscillation properties," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 1-14, January.
    12. Li, Huamin & Jin, Shiyu, 2024. "Intelligent vehicle car-following model based on cyber physical system and its simulation under mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    13. Nirmale, Sangram Krishna & Pinjari, Abdul Rawoof, 2023. "Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 169-193.
    14. Pengcheng Fan & Jingqiu Guo & Haifeng Zhao & Jasper S. Wijnands & Yibing Wang, 2019. "Car-Following Modeling Incorporating Driving Memory Based on Autoencoder and Long Short-Term Memory Neural Networks," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    15. van Lint, J.W.C. & Calvert, S.C., 2018. "A generic multi-level framework for microscopic traffic simulation—Theory and an example case in modelling driver distraction," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 63-86.
    16. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    17. Hamdar, Samer H. & Mahmassani, Hani S. & Treiber, Martin, 2015. "From behavioral psychology to acceleration modeling: Calibration, validation, and exploration of drivers’ cognitive and safety parameters in a risk-taking environment," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 32-53.
    18. Liu, Ronghui & Van Vliet, Dirck & Watling, David, 2006. "Microsimulation models incorporating both demand and supply dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 125-150, February.
    19. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
    20. Sun, Lu & Jafaripournimchahi, Ammar & Kornhauser, Alain & Hu, Wushen, 2020. "A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6182-:d:1438720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.