IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1880-d158732.html
   My bibliography  Save this article

Prediction Method for Power Transformer Running State Based on LSTM_DBN Network

Author

Listed:
  • Jun Lin

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Lei Su

    (Electric Power Research Institute of State Grid Shanghai Municipal Electric Power Company, Shanghai 200120, China)

  • Yingjie Yan

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Gehao Sheng

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Da Xie

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Xiuchen Jiang

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

It is of great significance to accurately get the running state of power transformers and timely detect the existence of potential transformer faults. This paper presents a prediction method of transformer running state based on LSTM_DBN network. Firstly, based on the trend of gas concentration in transformer oil, a long short-term memory (LSTM) model is established to predict the future characteristic gas concentration. Then, the accuracy and influencing factors of the LSTM model are analyzed with examples. The deep belief network (DBN) model is used to establish the transformer operation using the information in the transformer fault case library. The accuracy of state classification is higher than the support vector machine (SVM) and back-propagation neural network (BPNN). Finally, combined with the actual transformer data collected from the State Grid Corporation of China, the LSTM_DBN model is used to predict the transformer state. The results show that the method has higher prediction accuracy and can analyze potential faults.

Suggested Citation

  • Jun Lin & Lei Su & Yingjie Yan & Gehao Sheng & Da Xie & Xiuchen Jiang, 2018. "Prediction Method for Power Transformer Running State Based on LSTM_DBN Network," Energies, MDPI, vol. 11(7), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1880-:d:158732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1880/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1880/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui Song & Jiejie Dai & Lingen Luo & Gehao Sheng & Xiuchen Jiang, 2018. "Power Transformer Operating State Prediction Method Based on an LSTM Network," Energies, MDPI, vol. 11(4), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    2. Hong Pan & Chenyang Hang & Fang Feng & Yuan Zheng & Fang Li, 2022. "Improved Neural Network Algorithm Based Flow Characteristic Curve Fitting for Hydraulic Turbines," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    3. Jiang, Wuhao & Wang, Kai & Lv, Yan & Guo, Jianfeng & Ni, Zhongjin & Ni, Yihua, 2020. "Time series based behavior pattern quantification analysis and prediction — A study on animal behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Fei Mei & Yong Ren & Qingliang Wu & Chenyu Zhang & Yi Pan & Haoyuan Sha & Jianyong Zheng, 2018. "Online Recognition Method for Voltage Sags Based on a Deep Belief Network," Energies, MDPI, vol. 12(1), pages 1-16, December.
    5. Bing Zeng & Jiang Guo & Fangqing Zhang & Wenqiang Zhu & Zhihuai Xiao & Sixu Huang & Peng Fan, 2020. "Prediction Model for Dissolved Gas Concentration in Transformer Oil Based on Modified Grey Wolf Optimizer and LSSVM with Grey Relational Analysis and Empirical Mode Decomposition," Energies, MDPI, vol. 13(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mst. Shapna Akter & Hossain Shahriar & Reaz Chowdhury & M. R. C. Mahdy, 2022. "Forecasting the Risk Factor of Frontier Markets: A Novel Stacking Ensemble of Neural Network Approach," Future Internet, MDPI, vol. 14(9), pages 1-23, August.
    2. Yiyang Sun & Xiangwen Wang & Junjie Yang, 2022. "Modified Particle Swarm Optimization with Attention-Based LSTM for Wind Power Prediction," Energies, MDPI, vol. 15(12), pages 1-17, June.
    3. Mohammed G. Ragab & Said J. Abdulkadir & Norshakirah Aziz & Qasem Al-Tashi & Yousif Alyousifi & Hitham Alhussian & Alawi Alqushaibi, 2020. "A Novel One-Dimensional CNN with Exponential Adaptive Gradients for Air Pollution Index Prediction," Sustainability, MDPI, vol. 12(23), pages 1-22, December.
    4. Chao Liu & Ailin Zhang & Junhua Xue & Chen Lei & Xiangzhen Zeng, 2023. "LSTM-Pearson Gas Concentration Prediction Model Feature Selection and Its Applications," Energies, MDPI, vol. 16(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1880-:d:158732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.