IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v478y2017icp143-157.html
   My bibliography  Save this article

A network centrality measure framework for analyzing urban traffic flow: A case study of Wuhan, China

Author

Listed:
  • Zhao, Shuangming
  • Zhao, Pengxiang
  • Cui, Yunfan

Abstract

In this paper, we propose an improved network centrality measure framework that takes into account both the topological characteristics and the geometric properties of a road network in order to analyze urban traffic flow in relation to different modes: intersection, road, and community, which correspond to point mode, line mode, and area mode respectively. Degree, betweenness, and PageRank centralities are selected as the analysis measures, and GPS-enabled taxi trajectory data is used to evaluate urban traffic flow. The results show that the mean value of the correlation coefficients between the modified degree, the betweenness, and the PageRank centralities and the traffic flow in all periods are higher than the mean value of the correlation coefficients between the conventional degree, the betweenness, the PageRank centralities and the traffic flow at different modes; this indicates that the modified measurements, for analyzing traffic flow, are superior to conventional centrality measurements. This study helps to shed light into the understanding of urban traffic flow in relation to different modes from the perspective of complex networks.

Suggested Citation

  • Zhao, Shuangming & Zhao, Pengxiang & Cui, Yunfan, 2017. "A network centrality measure framework for analyzing urban traffic flow: A case study of Wuhan, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 143-157.
  • Handle: RePEc:eee:phsmap:v:478:y:2017:i:c:p:143-157
    DOI: 10.1016/j.physa.2017.02.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117301711
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.02.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Widhalm & Yingxiang Yang & Michael Ulm & Shounak Athavale & Marta González, 2015. "Discovering urban activity patterns in cell phone data," Transportation, Springer, vol. 42(4), pages 597-623, July.
    2. Neema Nassir & Mark Hickman & Zhen-Liang Ma, 2015. "Activity detection and transfer identification for public transit fare card data," Transportation, Springer, vol. 42(4), pages 683-705, July.
    3. Zhao, Pengxiang & Jia, Tao & Qin, Kun & Shan, Jie & Jiao, Chenjing, 2015. "Statistical analysis on the evolution of OpenStreetMap road networks in Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 59-72.
    4. A Penn & B Hillier & D Banister & J Xu, 1998. "Configurational Modelling of Urban Movement Networks," Environment and Planning B, , vol. 25(1), pages 59-84, February.
    5. B Hillier & A Penn & J Hanson & T Grajewski & J Xu, 1993. "Natural Movement: Or, Configuration and Attraction in Urban Pedestrian Movement," Environment and Planning B, , vol. 20(1), pages 29-66, February.
    6. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    7. Song Gao & Yaoli Wang & Yong Gao & Yu Liu, 2013. "Understanding Urban Traffic-Flow Characteristics: A Rethinking of Betweenness Centrality," Environment and Planning B, , vol. 40(1), pages 135-153, February.
    8. Yu Liu & Zhengwei Sui & Chaogui Kang & Yong Gao, 2014. "Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelo Furno & Nour-Eddin El Faouzi & Rajesh Sharma & Eugenio Zimeo, 2021. "Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-35, March.
    2. Ding Luo & Oded Cats & Hans Lint, 2020. "Can passenger flow distribution be estimated solely based on network properties in public transport systems?," Transportation, Springer, vol. 47(6), pages 2757-2776, December.
    3. Sfyridis, Alexandros & Agnolucci, Paolo, 2020. "Annual average daily traffic estimation in England and Wales: An application of clustering and regression modelling," Journal of Transport Geography, Elsevier, vol. 83(C).
    4. Liu, Weichen & Cao, Youhui & Wu, Wei & Guo, Jiaying, 2020. "Spatial impact analysis of trans-Yangtze highway fixed links: A case study of the Yangtze River Delta, China," Journal of Transport Geography, Elsevier, vol. 88(C).
    5. Dadashpoor, Hashem & Arasteh, Mojtaba, 2020. "Core-port connectivity: Towards shaping a national hinterland in a West Asia country," Transport Policy, Elsevier, vol. 88(C), pages 57-68.
    6. Lu, Feng & Liu, Kang & Duan, Yingying & Cheng, Shifen & Du, Fei, 2018. "Modeling the heterogeneous traffic correlations in urban road systems using traffic-enhanced community detection approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 227-237.
    7. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    8. Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan & Teixeira, Rui, 2022. "Identifying critical and vulnerable links: A new approach using the Fisher information matrix," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    9. Perez, Yuri & Pereira, Fabio Henrique, 2021. "Simulation of traffic light disruptions in street networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    10. Wang, Duo & Sipahi, Rifat, 2024. "Betweenness centrality can inform stability and delay margin in a large-scale connected vehicle system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    11. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lowry, Michael, 2014. "Spatial interpolation of traffic counts based on origin–destination centrality," Journal of Transport Geography, Elsevier, vol. 36(C), pages 98-105.
    2. Wagner, Roy, 2008. "On the metric, topological and functional structures of urban networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2120-2132.
    3. Daeyoung Jeong & Yun Eui Choi & Lilan Jin & Jinhyung Chon, 2019. "Impact of Spatial Change on Tourism by Bridge Connections between Islands: A Case Study of Ganghwa County in South Korea," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    4. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour," Journal of Transport Geography, Elsevier, vol. 74(C), pages 37-52.
    5. Milne, Dave & Watling, David, 2019. "Big data and understanding change in the context of planning transport systems," Journal of Transport Geography, Elsevier, vol. 76(C), pages 235-244.
    6. Mengyao Ren & Yaoyu Lin & Meihan Jin & Zhongyuan Duan & Yongxi Gong & Yu Liu, 2020. "Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records," Transportation, Springer, vol. 47(4), pages 1607-1629, August.
    7. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    8. Kayvan Karimi, 2018. "Space syntax: consolidation and transformation of an urban research field," Journal of Urban Design, Taylor & Francis Journals, vol. 23(1), pages 1-4, January.
    9. Valerio Cutini & Valerio Di Pinto & Antonio Maria Rinaldi & Francesco Rossini, 2020. "Proximal Cities: Does Walkability Drive Informal Settlements?," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    10. Bilong Shen & Weimin Zheng & Kathleen M. Carley, 2018. "Urban Activity Mining Framework for Ride Sharing Systems Based on Vehicular Social Networks," Networks and Spatial Economics, Springer, vol. 18(3), pages 705-734, September.
    11. Agryzkov, Taras & Tortosa, Leandro & Vicent, Jose F., 2019. "A variant of the current flow betweenness centrality and its application in urban networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 600-615.
    12. Abhijit Paul, 2014. "A comparative assessment of edge-effect with syntax integration generated in axial and unit-segment approaches to modelling vehicular movement networks," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 18(3), pages 340-354, November.
    13. Chen, Wendong & Chen, Xuewu & Cheng, Long & Liu, Xize & Chen, Jingxu, 2022. "Delineating borders of urban activity zones with free-floating bike sharing spatial interaction network," Journal of Transport Geography, Elsevier, vol. 104(C).
    14. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    15. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    16. Rafael Henrique Moraes Pereira & Frederico Rosa Borges de Holanda & Valério Augusto Soares de Medeiros & Ana Paula Borba Gonçalves Barros, 2015. "The Use Of Space Syntax In Urban Transport Analysis: Limits And Potentials," Discussion Papers 0188, Instituto de Pesquisa Econômica Aplicada - IPEA.
    17. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    18. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    19. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    20. Ji Han & Jiabin Liu, 2018. "Urban Spatial Interaction Analysis Using Inter-City Transport Big Data: A Case Study of the Yangtze River Delta Urban Agglomeration of China," Sustainability, MDPI, vol. 10(12), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:478:y:2017:i:c:p:143-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.