IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v43y2015icp78-90.html
   My bibliography  Save this article

Revealing travel patterns and city structure with taxi trip data

Author

Listed:
  • Liu, Xi
  • Gong, Li
  • Gong, Yongxi
  • Liu, Yu

Abstract

Delineating travel patterns and city structure has long been a core research topic in transport geography. Different from the physical structure, the city structure beneath the complex travel-flow system shows the inherent connection patterns within the city. On the basis of taxi-trip data from Shanghai, we built spatially embedded networks to model intra-city spatial interactions and to introduce network science methods into the analysis. The community detection method is applied to reveal sub-regional structures, and several network measures are used to examine the properties of sub-regions. Considering the differences between long- and short-distance trips, we reveal a two-level hierarchical polycentric city structure in Shanghai. Further explorations of sub-network structures demonstrate that urban sub-regions have broader internal spatial interactions, while suburban centers are more influential on local traffic. By incorporating the land use of centers from a travel-pattern perspective, we investigate sub-region formation and the interaction patterns of center–local places. This study provides insights into using emerging data sources to reveal travel patterns and city structures, which could potentially aid in developing and applying urban transportation policies. The sub-regional structures revealed in this study are more easily interpreted for transportation-related issues than for other structures, such as administrative divisions.

Suggested Citation

  • Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
  • Handle: RePEc:eee:jotrge:v:43:y:2015:i:c:p:78-90
    DOI: 10.1016/j.jtrangeo.2015.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692315000253
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2015.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu Liu & Chaogui Kang & Song Gao & Yu Xiao & Yuan Tian, 2012. "Understanding intra-urban trip patterns from taxi trajectory data," Journal of Geographical Systems, Springer, vol. 14(4), pages 463-483, October.
    2. Camille Roth & Soong Moon Kang & Michael Batty & Marc Barthélemy, 2011. "Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    3. Jonathan Reades & Francesco Calabrese & Carlo Ratti, 2009. "Eigenplaces: Analysing Cities Using the Space–Time Structure of the Mobile Phone Network," Environment and Planning B, , vol. 36(5), pages 824-836, October.
    4. Yu Liu & Zhengwei Sui & Chaogui Kang & Yong Gao, 2014. "Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    5. Liang, Xiao & Zheng, Xudong & Lv, Weifeng & Zhu, Tongyu & Xu, Ke, 2012. "The scaling of human mobility by taxis is exponential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2135-2144.
    6. Brian J. L. Berry, 1968. "Interdependency Of Spatial Structure And Spatial Behavior: A General Field Theory Formulation," Papers in Regional Science, Wiley Blackwell, vol. 21(1), pages 205-227, January.
    7. Li, Qingquan & Zhang, Tong & Wang, Handong & Zeng, Zhe, 2011. "Dynamic accessibility mapping using floating car data: a network-constrained density estimation approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 379-393.
    8. Carlo Ratti & Stanislav Sobolevsky & Francesco Calabrese & Clio Andris & Jonathan Reades & Mauro Martino & Rob Claxton & Steven H Strogatz, 2010. "Redrawing the Map of Great Britain from a Network of Human Interactions," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-6, December.
    9. Tim Schwanen & Martin Dijst & Frans M. Dieleman, 2004. "Policies for Urban Form and their Impact on Travel: The Netherlands Experience," Urban Studies, Urban Studies Journal Limited, vol. 41(3), pages 579-603, March.
    10. Fang, Zhixiang & Shaw, Shih-Lung & Tu, Wei & Li, Qingquan & Li, Yuguang, 2012. "Spatiotemporal analysis of critical transportation links based on time geographic concepts: a case study of critical bridges in Wuhan, China," Journal of Transport Geography, Elsevier, vol. 23(C), pages 44-59.
    11. Christian Thiemann & Fabian Theis & Daniel Grady & Rafael Brune & Dirk Brockmann, 2010. "The Structure of Borders in a Small World," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-7, November.
    12. Song Gao & Yaoli Wang & Yong Gao & Yu Liu, 2013. "Understanding Urban Traffic-Flow Characteristics: A Rethinking of Betweenness Centrality," Environment and Planning B, , vol. 40(1), pages 135-153, February.
    13. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    14. Andrea De Montis & Marc Barthélemy & Alessandro Chessa & Alessandro Vespignani, 2007. "The Structure of Interurban Traffic: A Weighted Network Analysis," Environment and Planning B, , vol. 34(5), pages 905-924, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meead Saberi & Taha H. Rashidi & Milad Ghasri & Kenneth Ewe, 2018. "A Complex Network Methodology for Travel Demand Model Evaluation and Validation," Networks and Spatial Economics, Springer, vol. 18(4), pages 1051-1073, December.
    2. He, Zhengbing, 2020. "Spatial-temporal fractal of urban agglomeration travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Rongxiang Su & Zhixiang Fang & Ningxin Luo & Jingwei Zhu, 2018. "Understanding the Dynamics of the Pick-Up and Drop-Off Locations of Taxicabs in the Context of a Subsidy War among E-Hailing Apps," Sustainability, MDPI, vol. 10(4), pages 1-24, April.
    4. Meead Saberi & Hani S. Mahmassani & Dirk Brockmann & Amir Hosseini, 2017. "A complex network perspective for characterizing urban travel demand patterns: graph theoretical analysis of large-scale origin–destination demand networks," Transportation, Springer, vol. 44(6), pages 1383-1402, November.
    5. Wang, Wenjun & Pan, Lin & Yuan, Ning & Zhang, Sen & Liu, Dong, 2015. "A comparative analysis of intra-city human mobility by taxi," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 134-147.
    6. Huo, Jie & Wang, Xu-Ming & Zhao, Ning & Hao, Rui, 2016. "Statistical characteristics of dynamics for population migration driven by the economic interests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 123-134.
    7. Yeran Sun & Hongchao Fan & Ming Li & Alexander Zipf, 2016. "Identifying the city center using human travel flows generated from location-based social networking data," Environment and Planning B, , vol. 43(3), pages 480-498, May.
    8. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.
    9. Jing Yang & Disheng Yi & Jingjing Liu & Yusi Liu & Jing Zhang, 2019. "Spatiotemporal Change Characteristics of Nodes’ Heterogeneity in the Directed and Weighted Spatial Interaction Networks: Case Study within the Sixth Ring Road of Beijing, China," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    10. Tang, Jinjun & Liu, Fang & Wang, Yinhai & Wang, Hua, 2015. "Uncovering urban human mobility from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 140-153.
    11. Quanyi Zheng & Xiaolong Zhao & Mengxiao Jin, 2019. "Research on Urban Public Green Space Planning Based on Taxi Data: A Case Study on Three Districts of Shenzhen, China," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    12. Bilong Shen & Weimin Zheng & Kathleen M. Carley, 2018. "Urban Activity Mining Framework for Ride Sharing Systems Based on Vehicular Social Networks," Networks and Spatial Economics, Springer, vol. 18(3), pages 705-734, September.
    13. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    14. Chi, Guanghua & Liu, Yu & Shi, Li & Gao, Yong, 2017. "Understanding the effects of administrative boundary in sampling spatially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 616-625.
    15. Kang Wu & Jingxian Tang & Ying Long, 2019. "Delineating the Regional Economic Geography of China by the Approach of Community Detection," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    16. Chen, Xiqun (Michael) & Chen, Chuqiao & Ni, Linglin & Li, Li, 2018. "Spatial visitation prediction of on-demand ride services using the scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 84-94.
    17. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    18. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    19. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    20. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:43:y:2015:i:c:p:78-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.