IDEAS home Printed from https://ideas.repec.org/a/taf/rjusxx/v18y2014i3p340-354.html
   My bibliography  Save this article

A comparative assessment of edge-effect with syntax integration generated in axial and unit-segment approaches to modelling vehicular movement networks

Author

Listed:
  • Abhijit Paul

Abstract

Unit-segment analysis - a recent development in space syntax - has shown better results in modelling vehicular movement networks than the traditional axial analysis merely by using configurational measures, integration results, of roadway segments of urban grids. Despite this advancement, some of the findings of the unit-segment model have remained controversial especially in the academic community. The concern of edge-effect is one of them. That is, at the practical level, how is it possible for a unit segment analysis to predict vehicular movement of a specified urban roadway grid with high accuracy when the analysis model does not consider trips that enter into the grid from outside? This paper throws a deeper insight into this question by evaluating the intensities of edge-effect generated by both the syntax models. By using the case of Tech Terrace, a residential neighbourhood of the city of Lubbock in West Texas, and then the city itself, the study produces extensive theoretical as well as empirical evidence showing that vehicular traffic predictions made by both the models are not free from edge-effect, but the generated effect in the unit-segment model is somewhat reduced than that of the axial counterpart. The findings also suggest that the problem of edge-effect is deep founded in the perception of network topology of an urban grid, and without understanding its role in assigning trips, brought from outside the grid into the grid itself, we indeed cannot understand the space syntax approach to modelling vehicular movement networks in a comprehensive way.

Suggested Citation

  • Abhijit Paul, 2014. "A comparative assessment of edge-effect with syntax integration generated in axial and unit-segment approaches to modelling vehicular movement networks," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 18(3), pages 340-354, November.
  • Handle: RePEc:taf:rjusxx:v:18:y:2014:i:3:p:340-354
    DOI: 10.1080/12265934.2014.908131
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/12265934.2014.908131
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/12265934.2014.908131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abhijit Paul, 2013. "A syntactic approach to identifying land-use influence on vehicular movement: the case of Lubbock," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 17(1), pages 71-84, March.
    2. A Penn & B Hillier & D Banister & J Xu, 1998. "Configurational Modelling of Urban Movement Networks," Environment and Planning B, , vol. 25(1), pages 59-84, February.
    3. B Hillier & A Penn & J Hanson & T Grajewski & J Xu, 1993. "Natural Movement: Or, Configuration and Attraction in Urban Pedestrian Movement," Environment and Planning B, , vol. 20(1), pages 29-66, February.
    4. Alasdair Turner, 2007. "From Axial to Road-Centre Lines: A New Representation for Space Syntax and a New Model of Route Choice for Transport Network Analysis," Environment and Planning B, , vol. 34(3), pages 539-555, June.
    5. Carlo Ratti, 2004. "Space Syntax: Some Inconsistencies," Environment and Planning B, , vol. 31(4), pages 487-499, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Leccese & Davide Lista & Giacomo Salvadori & Marco Beccali & Marina Bonomolo, 2020. "On the Applicability of the Space Syntax Methodology for the Determination of Street Lighting Classes," Energies, MDPI, vol. 13(6), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daeyoung Jeong & Yun Eui Choi & Lilan Jin & Jinhyung Chon, 2019. "Impact of Spatial Change on Tourism by Bridge Connections between Islands: A Case Study of Ganghwa County in South Korea," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    2. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour," Journal of Transport Geography, Elsevier, vol. 74(C), pages 37-52.
    3. Li, Yuan & Xiao, Longzhu & Ye, Yu & Xu, Wangtu & Law, Andrew, 2016. "Understanding tourist space at a historic site through space syntax analysis: The case of Gulangyu, China," Tourism Management, Elsevier, vol. 52(C), pages 30-43.
    4. Zhao, Shuangming & Zhao, Pengxiang & Cui, Yunfan, 2017. "A network centrality measure framework for analyzing urban traffic flow: A case study of Wuhan, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 143-157.
    5. Yu Ye & Hanting Xie & Jia Fang & Hetao Jiang & De Wang, 2019. "Daily Accessed Street Greenery and Housing Price: Measuring Economic Performance of Human-Scale Streetscapes via New Urban Data," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    6. Lowry, Michael, 2014. "Spatial interpolation of traffic counts based on origin–destination centrality," Journal of Transport Geography, Elsevier, vol. 36(C), pages 98-105.
    7. Jeong, Sang Kyu & Ban, Yong Un, 2016. "A point-based angular analysis model for identifying attributes of spaces at nodes in street networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 71-84.
    8. Su, Shiliang & Zhou, Hao & Xu, Mengya & Ru, Hu & Wang, Wen & Weng, Min, 2019. "Auditing street walkability and associated social inequalities for planning implications," Journal of Transport Geography, Elsevier, vol. 74(C), pages 62-76.
    9. Lebendiger, Yonatan & Lerman, Yoav, 2019. "Applying space syntax for surface rapid transit planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 59-72.
    10. Kayvan Karimi, 2018. "Space syntax: consolidation and transformation of an urban research field," Journal of Urban Design, Taylor & Francis Journals, vol. 23(1), pages 1-4, January.
    11. Rafael Henrique Moraes Pereira & Frederico Rosa Borges de Holanda & Valério Augusto Soares de Medeiros & Ana Paula Borba Gonçalves Barros, 2015. "The Use Of Space Syntax In Urban Transport Analysis: Limits And Potentials," Discussion Papers 0188, Instituto de Pesquisa Econômica Aplicada - IPEA.
    12. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    13. Wagner, Roy, 2008. "On the metric, topological and functional structures of urban networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2120-2132.
    14. Kyung Wook Seo & Sugie Lee, 2019. "Oxcart Route in the City: Tracking the Urbanization Process of an Agricultural Village in Korea," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    15. Javier Delso & Belén Martín & Emilio Ortega & Isabel Otero, 2017. "A Model for Assessing Pedestrian Corridors. Application to Vitoria-Gasteiz City (Spain)," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    16. Isti Hidayati & Claudia Yamu & Wendy Tan, 2019. "The Emergence of Mobility Inequality in Greater Jakarta, Indonesia: A Socio-Spatial Analysis of Path Dependencies in Transport–Land Use Policies," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    17. Peixue Liu & Xiao Xiao & Jie Zhang & Ronghua Wu & Honglei Zhang, 2018. "Spatial Configuration and Online Attention: A Space Syntax Perspective," Sustainability, MDPI, vol. 10(1), pages 1-15, January.
    18. Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.
    19. Samira Ramezani & Barbara Pizzo & Elizabeth Deakin, 2018. "An integrated assessment of factors affecting modal choice: towards a better understanding of the causal effects of built environment," Transportation, Springer, vol. 45(5), pages 1351-1387, September.
    20. Grimaldi, Didier & Fernandez, Vicenc & Carrasco, Carlos, 2019. "Heuristic for the localization of new shops based on business and social criteria," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 249-257.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rjusxx:v:18:y:2014:i:3:p:340-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rjus20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.