IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v40y2013i1p135-153.html
   My bibliography  Save this article

Understanding Urban Traffic-Flow Characteristics: A Rethinking of Betweenness Centrality

Author

Listed:
  • Song Gao
  • Yaoli Wang
  • Yong Gao
  • Yu Liu

Abstract

In this study we estimate urban traffic flow using GPS-enabled taxi trajectory data in Qingdao, China, and examine the capability of the betweenness centrality of the street network to predict traffic flow. The results show that betweenness centrality is not a good predictor variable for urban traffic flow, which has, theoretically, been pointed out in existing literature. With a critique of the betweenness centrality as a predictor, we further analyze the characteristics of betweenness centrality and point out the ‘gap’ between this centrality measure and actual flow. Rather than considering only the topological properties of a street network, we take into account two aspects, the spatial heterogeneity of human activities and the distance-decay law, to explain the observed traffic-flow distribution. The spatial distribution of human activities is estimated using mobile phone Erlang values, and the power law distance decay is adopted. We run Monte Carlo simulations to generate trips and predict traffic-flow distributions, and use a weighted correlation coefficient to measure the goodness of fit between the observed and the simulated data. The correlation coefficient achieves the maximum (0.623) when the exponent equals 2.0, indicating that the proposed model, which incorporates geographical constraints and human mobility patterns, can interpret urban traffic flow well.

Suggested Citation

  • Song Gao & Yaoli Wang & Yong Gao & Yu Liu, 2013. "Understanding Urban Traffic-Flow Characteristics: A Rethinking of Betweenness Centrality," Environment and Planning B, , vol. 40(1), pages 135-153, February.
  • Handle: RePEc:sae:envirb:v:40:y:2013:i:1:p:135-153
    DOI: 10.1068/b38141
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b38141
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b38141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Qingquan & Zhang, Tong & Wang, Handong & Zeng, Zhe, 2011. "Dynamic accessibility mapping using floating car data: a network-constrained density estimation approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 379-393.
    2. Chen, Cynthia & Chen, Jason & Barry, James, 2009. "Diurnal pattern of transit ridership: a case study of the New York City subway system," Journal of Transport Geography, Elsevier, vol. 17(3), pages 176-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yujie & Wang, Fahui, 2015. "Decomposing excess commuting: a Monte Carlo simulation approach," Journal of Transport Geography, Elsevier, vol. 44(C), pages 43-52.
    2. Shenjun Yao & Jinzi Wang & Lei Fang & Jianping Wu, 2018. "Identification of Vehicle-Pedestrian Collision Hotspots at the Micro-Level Using Network Kernel Density Estimation and Random Forests: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 10(12), pages 1-11, December.
    3. Zhao, Shuangming & Zhao, Pengxiang & Cui, Yunfan, 2017. "A network centrality measure framework for analyzing urban traffic flow: A case study of Wuhan, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 143-157.
    4. Bilong Shen & Weimin Zheng & Kathleen M. Carley, 2018. "Urban Activity Mining Framework for Ride Sharing Systems Based on Vehicular Social Networks," Networks and Spatial Economics, Springer, vol. 18(3), pages 705-734, September.
    5. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    6. Agryzkov, Taras & Tortosa, Leandro & Vicent, Jose F., 2019. "A variant of the current flow betweenness centrality and its application in urban networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 600-615.
    7. Wen, Tzai-Hung & Chin, Wei-Chien-Benny & Lai, Pei-Chun, 2017. "Understanding the topological characteristics and flow complexity of urban traffic congestion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 166-177.
    8. Feng, Jia & Li, Xiamiao & Mao, Baohua & Xu, Qi & Bai, Yun, 2017. "Weighted complex network analysis of the Beijing subway system: Train and passenger flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 213-223.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Nie & Zhensheng Wang & Qingyun Du & Fu Ren & Qin Tian, 2015. "A Network-Constrained Integrated Method for Detecting Spatial Cluster and Risk Location of Traffic Crash: A Case Study from Wuhan, China," Sustainability, MDPI, vol. 7(3), pages 1-16, March.
    2. Chiou, Yu-Chiun & Jou, Rong-Chang & Yang, Cheng-Han, 2015. "Factors affecting public transportation usage rate: Geographically weighted regression," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 161-177.
    3. Lijie Yu & Yarong Cong & Kuanmin Chen, 2020. "Determination of the Peak Hour Ridership of Metro Stations in Xi’an, China Using Geographically-Weighted Regression," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    4. Yu Liu & Chaogui Kang & Song Gao & Yu Xiao & Yuan Tian, 2012. "Understanding intra-urban trip patterns from taxi trajectory data," Journal of Geographical Systems, Springer, vol. 14(4), pages 463-483, October.
    5. Xu, Chen & Xu, Xueguo, 2024. "A two-stage resilience promotion approach for urban rail transit networks based on topology enhancement and recovery optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    6. Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), 2012. "Accessibility Analysis and Transport Planning," Books, Edward Elgar Publishing, number 14718.
    7. Jiao, Hongzan & Huang, Shibiao & Zhou, Yu, 2023. "Understanding the land use function of station areas based on spatiotemporal similarity in rail transit ridership: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 109(C).
    8. Luyu Liu & Adam Porr & Harvey J. Miller, 2023. "Realizable accessibility: evaluating the reliability of public transit accessibility using high-resolution real-time data," Journal of Geographical Systems, Springer, vol. 25(3), pages 429-451, July.
    9. Tang, Jinjun & Liu, Fang & Wang, Yinhai & Wang, Hua, 2015. "Uncovering urban human mobility from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 140-153.
    10. Jairo Ortega & János Tóth & Tamás Péter, 2021. "A Comprehensive Model to Study the Dynamic Accessibility of the Park & Ride System," Sustainability, MDPI, vol. 13(7), pages 1-17, April.
    11. Wang, Yafei & Chen, Bi Yu & Yuan, Hui & Wang, Donggen & Lam, William H.K. & Li, Qingquan, 2018. "Measuring temporal variation of location-based accessibility using space-time utility perspective," Journal of Transport Geography, Elsevier, vol. 73(C), pages 13-24.
    12. Xintao Liu & Ziwei Lin & Jianwei Huang & He Gao & Wenzhong Shi, 2021. "Evaluating the Inequality of Medical Service Accessibility Using Smart Card Data," IJERPH, MDPI, vol. 18(5), pages 1-18, March.
    13. Daeyoung Kwon & Sung Eun Sally Oh & Sangwon Choi & Brian H. S. Kim, 2023. "Viability of compact cities in the post-COVID-19 era: subway ridership variations in Seoul Korea," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 71(1), pages 175-203, August.
    14. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    15. Chen, Mu-Chen & Wei, Yu, 2011. "Exploring time variants for short-term passenger flow," Journal of Transport Geography, Elsevier, vol. 19(4), pages 488-498.
    16. Horner, Mark & Downs, Joni, 2014. "Integrating people and place: A density-based measure for assessing accessibility to opportunities," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 1-18.
    17. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    18. Zhang, Jianhua & Song, Bo & Zhang, Zhaojun & Liu, Haikuan, 2014. "An approach for modeling vulnerability of the network of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 127-136.
    19. Escobar, D. & Cadena-Gaitan, C. & Garcia, F., 2014. "Accessibility analysis as an urban planning tool: Gas station location," MERIT Working Papers 2014-048, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    20. Guoqiang Shen & Zhangye Wang & Long Zhou & Yu Liu & Xiaoyi Yan, 2020. "Home-Based Locational Accessibility to Essential Urban Services: The Case of Wake County, North Carolina, USA," Sustainability, MDPI, vol. 12(21), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:40:y:2013:i:1:p:135-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.