IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v636y2024ics0378437124000359.html
   My bibliography  Save this article

Betweenness centrality can inform stability and delay margin in a large-scale connected vehicle system

Author

Listed:
  • Wang, Duo
  • Sipahi, Rifat

Abstract

Delays in information transmission and human reactions act as one main factor of instability in connected vehicle networks (CVN). This study reveals that a relationship exists between the delay margin (DM) of a class of CVN and betweenness centrality (BC) associated with the network graph of this CVN. Two dynamic models are considered, one only uses velocity information of vehicles while the other considers velocity and headway to regulate vehicles’ motions. We randomize vehicle orders in multiple trials to generate platoon samples. DM and BC values are computed in each platoon and the respective statistical models between them are obtained. The results show that the mean and variance of BC have a negative correlation with DM. We complete the study with a string stability analysis, which demonstrates the diffusion of oscillations in a platoon where there is no explicit leader. In summary, the work bridges DM with BC in a CVN and provides insights toward designing platoons with larger DM. These rules also enable means to rapidly estimate DM from statistical models. Lastly, we report that, to achieve string stability, large human-driven vehicle clusters are not recommended.

Suggested Citation

  • Wang, Duo & Sipahi, Rifat, 2024. "Betweenness centrality can inform stability and delay margin in a large-scale connected vehicle system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
  • Handle: RePEc:eee:phsmap:v:636:y:2024:i:c:s0378437124000359
    DOI: 10.1016/j.physa.2024.129527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124000359
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2006. "Delays, inaccuracies and anticipation in microscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 71-88.
    2. Robert E. Chandler & Robert Herman & Elliott W. Montroll, 1958. "Traffic Dynamics: Studies in Car Following," Operations Research, INFORMS, vol. 6(2), pages 165-184, April.
    3. Kai-ching Chu, 1974. "Decentralized Control of High-Speed Vehicular Strings," Transportation Science, INFORMS, vol. 8(4), pages 361-384, November.
    4. Petter Holme, 2003. "Congestion And Centrality In Traffic Flow On Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 163-176.
    5. Liu, Bo & Su, Housheng & Wu, Licheng & Shen, Xixi, 2021. "Controllability for multi-agent systems with matrix-weight-based signed network," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    6. Zhao, Shuangming & Zhao, Pengxiang & Cui, Yunfan, 2017. "A network centrality measure framework for analyzing urban traffic flow: A case study of Wuhan, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 143-157.
    7. Loet Leydesdorff, 2007. "Betweenness centrality as an indicator of the interdisciplinarity of scientific journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(9), pages 1303-1319, July.
    8. Robert Herman & Elliott W. Montroll & Renfrey B. Potts & Richard W. Rothery, 1959. "Traffic Dynamics: Analysis of Stability in Car Following," Operations Research, INFORMS, vol. 7(1), pages 86-106, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    2. Hamdar, Samer H. & Mahmassani, Hani S. & Treiber, Martin, 2015. "From behavioral psychology to acceleration modeling: Calibration, validation, and exploration of drivers’ cognitive and safety parameters in a risk-taking environment," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 32-53.
    3. Koutsopoulos, Haris N. & Farah, Haneen, 2012. "Latent class model for car following behavior," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 563-578.
    4. Pei, Xin & Pan, Yan & Wang, Haixin & Wong, S.C. & Choi, Keechoo, 2016. "Empirical evidence and stability analysis of the linear car-following model with gamma-distributed memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 311-323.
    5. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2018. "Stability analysis methods and their applicability to car-following models in conventional and connected environments," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 212-237.
    6. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    7. Zhang, Xiaoyan & Jarrett, David F., 1997. "Stability analysis of the classical car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 441-462, November.
    8. Tordeux, Antoine & Lassarre, Sylvain & Roussignol, Michel, 2010. "An adaptive time gap car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1115-1131, September.
    9. Zong, Fang & Wang, Meng & Tang, Jinjun & Zeng, Meng, 2022. "Modeling AVs & RVs’ car-following behavior by considering impacts of multiple surrounding vehicles and driving characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    10. Chen, Danjue & Laval, Jorge & Zheng, Zuduo & Ahn, Soyoung, 2012. "A behavioral car-following model that captures traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 744-761.
    11. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    12. Maiti, Nandan & Chilukuri, Bhargava Rama, 2023. "Does anisotropy hold in mixed traffic conditions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    13. Perez, Yuri & Pereira, Fabio Henrique, 2021. "Simulation of traffic light disruptions in street networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    14. Helbing, Dirk, 1995. "Theoretical foundation of macroscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 219(3), pages 375-390.
    15. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    16. Li, Xiang & Sun, Jian-Qiao, 2014. "Effect of interactions between vehicles and pedestrians on fuel consumption and emissions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 661-675.
    17. Mauch, Michael, 2002. "Analyses of Start-Stop Waves in Congested Freeway Traffic," University of California Transportation Center, Working Papers qt9kb9x6n5, University of California Transportation Center.
    18. Holland, E. N., 1998. "A generalised stability criterion for motorway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 141-154, February.
    19. Angelo Furno & Nour-Eddin El Faouzi & Rajesh Sharma & Eugenio Zimeo, 2021. "Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-35, March.
    20. Denos C. Gazis, 2002. "The Origins of Traffic Theory," Operations Research, INFORMS, vol. 50(1), pages 69-77, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:636:y:2024:i:c:s0378437124000359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.